DOI QR코드

DOI QR Code

Design and Analysis of Lorentz Force-type Magnetic Bearing Based on High Precision and Low Power Consumption

  • Received : 2016.10.11
  • Accepted : 2017.05.11
  • Published : 2017.06.30

Abstract

Magnetically suspended control & sensitive gyroscope (MSCSG) is a novel type of gyroscope with the integration of attitude control and attitude angular measurement. To improve the precision and reduce the power consumption of Lorentz Force-type Magnetic Bearing (LFMB), the air gap flux density distribution of LFMB has been studied. The uniformity of air gap flux density is defined to qualify the uniform degree of the air gap flux density distribution. Considering the consumption, the average value of flux density is defined as well. Some optimal designs and analyses of LFMB are carried out by finite element simulation. The strength of the permanent magnet is taken into consideration during the machining process. To verify the design and simulation, a high-precision instrument is employed to measure the 3-dimensional magnetic flux density of LFMB. After measurement and calculation, the uniform degree of magnetic flux density distribution reaches 0.978 and the average value of the flux density is 0.482T. Experimental results show that the optimal design is effective and some useful advice can be obtained for further research.

Keywords

References

  1. J. Tang, B. Liu, J. Fang, and S. S. Ge, J. Vib. Control. 19, 1962 (2013). https://doi.org/10.1177/1077546312449643
  2. G. Liu, J. Fang, and J. Liu, Aerospace Control 41, 88 (2008).
  3. X. Chen and Y. Ren, Proc IMechE Part C :J. Mechanical Engineering Science 228, 2303 (2014). https://doi.org/10.1177/0954406213517871
  4. J. C. Ji, C. H. Hansen, and A. C. Zander, J. Intell. Mater. Syst. Struct. 19, 1471 (2008). https://doi.org/10.1177/1045389X08088666
  5. T. Wei, J. Fang, and Z. Liu, Journal of Mechanical Engineering 46, 159 (2010).
  6. J. Fang, S. Zheng, and B. Han, IEEE/ASME Trans. Mechatron. 18, 32 (2013). https://doi.org/10.1109/TMECH.2011.2161877
  7. Y. Ren and J. Fang, IEEE Trans. Ind. Electron. 59, 4590 (2012). https://doi.org/10.1109/TIE.2011.2179277
  8. Y. Ren and J. Fang, IEEE Trans. Ind. Electron. 61, 1539 (2014). https://doi.org/10.1109/TIE.2013.2257147
  9. J. Fang, J. Sun, and Y. Fan, Magnetically Suspended Inertial Momentum Wheel Technology, National Defense Industry Press, Beijing (2012) pp. 9-10.
  10. Y. Maruyama, M. Takasaki, Y. Ishino, M. Takasaki, T. Ishigami, and H. Kameno, Japan Joint Automatic Control Conference (2006).
  11. Y. Maruyama, T. Mizuno, M. Takasaki, Y. Ishino, T. Ishigami, and H. Kameno, Journal of System Design and Dynamics 2, 155 (2008). https://doi.org/10.1299/jsdd.2.155
  12. S. H. Park and C. W Lee, IEEE/ASME Trans. Mechatron. 10, 618 (2004).
  13. L. S. Stephens and D. G. Kim, IEEE Trans. Magn. 38, 1764 (2002). https://doi.org/10.1109/TMAG.2002.1017769
  14. H. Y. Kim, C. W. Lee, Mechatronics 16, 13 (2006). https://doi.org/10.1016/j.mechatronics.2005.09.005
  15. N. Kurita, T. Ishikawa, and M. Matsunami, 2009 International Conference on Electrical Machines and Systems, 1 (2009).
  16. Y. J. Yu, J. C. Fang, B. Xiang, and C. E. Wang, ISA Trans. 53, 1892 (2014). https://doi.org/10.1016/j.isatra.2014.07.002
  17. J. Abrahamsson, J. Ogren, and M. Hedlund, IEEE Trans. Magn. 50, 1 (2013).
  18. B. Xiang and J. Tang, Mechatronics 28, 46 (2015). https://doi.org/10.1016/j.mechatronics.2015.04.008
  19. B. Liu and J. Fang, Hangkong Xuebao/acta Aeronautica Et Astronautica Sinica 32, 1478 (2011).