DOI QR코드

DOI QR Code

Magnetic Particle Separation by an Optimized Coil: A Graphical User Interface

  • Rouhi, Kasra (Applied Electromagnetics Lab, School of Electrical Engineering, Iran University of Science and Technology) ;
  • Hajiaghajani, Amirhossein (Applied Electromagnetics Lab, School of Electrical Engineering, Iran University of Science and Technology) ;
  • Abdolali, Ali (Applied Electromagnetics Lab, School of Electrical Engineering, Iran University of Science and Technology)
  • Received : 2017.01.01
  • Accepted : 2017.04.28
  • Published : 2017.06.30

Abstract

Magnetic separators that clean the fluid stream from impurities, protect the installations in numerous industries. This paper introduces a graphical user interface (GUI) which proposes an optimized coil separating magnetic particles with a radius from 1 up to 500 µm. High gradient magnetic fields are employed in an arbitrary user defined fluidic channel which is made of a nonmetallic material. The effects of coil parameters are studied and adjusted to design an optimum coil with a minimum Ohmic loss. In addition, to design the coil scheme based on the particle movements, a mathematical particle-tracing model within the fluid channels has been utilized. In comparison to conventional magnetic separators, this model is reconfigurable by the user, produces a weaker magnetic field, allows for continuous purifying and is easy to install, with high separation efficiency. The presented GUI is simple to use, where the coil's manufacturing limitations can be specified.

Keywords

References

  1. C. W. Yung, J. Fiering, A. J. Mueller, and D. E. Ingber, Lab on a Chip 9, 1171 (2009). https://doi.org/10.1039/b816986a
  2. O. Lara, X. Tong, M. Zborowski, and J. J. Chalmers, Exp. Hematol. 32, 891 (2004). https://doi.org/10.1016/j.exphem.2004.07.007
  3. Y. H. Jang, M. J. Hancock, S. B. Kim, S. Selimovic, W. Y. Sim, H. Bae, and A. Khademhosseini, Lab on a Chip 11, 3277 (2011). https://doi.org/10.1039/c1lc20449a
  4. P. O. Krutzik, J. M. Crane, M. R. Clutter, and G. P. Nolan, Nat. Chem. Biol. 4, 132 (2008). https://doi.org/10.1038/nchembio.2007.59
  5. J. Oberteuffer, IEEE Trans. Magn. 10, 223 (1974). https://doi.org/10.1109/TMAG.1974.1058315
  6. H. A. Pohl, Cambridge Univ. Press, Cambridge (1978) pp. 232-254.
  7. F. Petersson, A. Nilsson, C. Holm, H. Jonsson, and T. Laurell, Analyst 129, 938 (2004). https://doi.org/10.1039/B409139F
  8. P. R. C. Gascoyne and Jody Vykoukal, Electrophoresis 23, 1973 (2002). https://doi.org/10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1
  9. Y. Terashima, H. Ozaki, and M. Sekine, Water Res. 20, 537 (1986). https://doi.org/10.1016/0043-1354(86)90017-5
  10. J. H. P. Watson, J. Appl. Phys. 44, 4209 (1973). https://doi.org/10.1063/1.1662920
  11. M. Franzreb and W. H. Hoell, IEEE Trans. Appl. Supercond. 10, 923 (2000). https://doi.org/10.1109/77.828382
  12. S. Miltenyi, W. Muller, W. Weichel, and A. Radbruch, Cytometry 11, 231 (1990). https://doi.org/10.1002/cyto.990110203
  13. C. Alexiou, R. J. Schmid, R. Jurgons, M. Kremer, G. Wanner, C. Bergemann, E. Huenges, T. Nawroth, W. Arnold, and F. G. Parak, Eur. Biophys. J. 35, 446 (2006). https://doi.org/10.1007/s00249-006-0042-1
  14. S. Sanchez, A. A. Solovev, S. M. Harazim, and O. G. Schmidt, J. Am. Chem. Soc. 133, 701 (2011). https://doi.org/10.1021/ja109627w
  15. T. B. Jones, Cambridge University Press, (1995).
  16. S. Rudge, C. Peterson, C. Vessely, J. Koda, S. Stevens, and L. Catterall, J. Control. Release 74, 335 (2001). https://doi.org/10.1016/S0168-3659(01)00344-3
  17. A. D. Grief and G. Richardson, J. Magn. Magn. Mater. 293, 455 (2005). https://doi.org/10.1016/j.jmmm.2005.02.040
  18. W. Peukert, H. C. C. Schwarzer, and F. Stenger, Chem. Eng. Process. Process Intensif. 44, 245 (2005). https://doi.org/10.1016/j.cep.2004.02.018
  19. N. C. L. Hess, D. J. Carlson, J. D. Inder, E. Jesulola, J. R. Mcfarlane, and N. A. Smart, Physiol. Res. 65, 461 (2016).
  20. R. Werner and B. Wolf-Jurgen, Non-Dest. Test. in Civ. Eng., Germany (2003).

Cited by

  1. Magnetic field pattern synthesis and its application in targeted drug delivery: Design and implementation vol.39, pp.4, 2018, https://doi.org/10.1002/bem.22107