DOI QR코드

DOI QR Code

Optimal Region of Interest Location of Test Bolus Technique in Extra Cranial Carotid Contrast Enhanced Magnetic Resonance Angiography

  • Received : 2017.03.12
  • Accepted : 2017.04.20
  • Published : 2017.06.30

Abstract

This study is aimed to optimize a location of region of interest (ROI) in test bolus carotid contrast enhanced magnetic resonance angiography (CE-MRA) at 3.0T. A total of consecutive 270 patients with no cardiovascular and vessel diseases were selected. Patients underwent elliptical centric 3D CE-MRA with the test bolus technique to identify the individual arterial arrival time. Quantitative measurements were performed by drawing ROIs of $25mm^2$ and signal intensities (SI) were measured in the center of common carotid artery (CCA), internal carotid artery (ICA) and aortic arch (AA). As a result, ROIs located within AA showed a significantly clarified arterial peak and over three times increased SI, while no significant arterial peak time differences were observed compared to ROIs located within CCA. In conclusion, it was demonstrated that the aortic arch is the optimal position to locate ROI in test bolus images of the carotid CE-MRA.

Keywords

References

  1. J. Menke, Eur. J. Radiol. 19, 2654 (2009). https://doi.org/10.1007/s00330-009-1448-9
  2. J. S. Yu, K. W. Kim, B. J. Jo, M. G. Jeong, J. K. Kim, J. K. Hahm, J. T. Lee, and H. S. Yoo, Yonsei Med. J. 41, 459 (2000). https://doi.org/10.3349/ymj.2000.41.4.459
  3. M. R. Prince, D. L. Narasimham, J. C. Stanley, T. L. Chenevert, D. M. Williams, M. V. Marx, and K. J. Cho, Radiology 197, 785 (1995). https://doi.org/10.1148/radiology.197.3.7480757
  4. B. J. Park, M. G. Kim, S. I. Suh, S. J. Hong, K. R. Cho, B. K. Seo, and K. Y. Lee, J. Korean Radiol. Soc. 44, 317 (2001). https://doi.org/10.3348/jkrs.2001.44.3.317
  5. J. Choi, S. M. Lim, and Y. Kim, J. Korean Radiol. Soc. 64, 203 (2011). https://doi.org/10.3348/jksr.2011.64.3.203
  6. S. Kim, Y. Kim, S. Yoon, K. Yoo, and J. Lim, J. Korean Magn. Reson. Tech. 18, 244 (2005).
  7. H. Zhang, J. H. Maki, and M. R. Prince, J. Magn. Reson. Imaging 25, 13 (2007). https://doi.org/10.1002/jmri.20767
  8. Y. E. Chung, K. W. Kim, J. H. Kim, J. S. Lim, Y. T. Oh, J. J. Chung, and M. J. Kim, J. Comput. Assist Tomogr. 30, 182 (2006). https://doi.org/10.1097/00004728-200603000-00003
  9. H. Bosmans, G. Wilms, S. Dymarkowski, and G. Marchal, Eur. J. Radiol. 38, 2 (2001). https://doi.org/10.1016/S0720-048X(01)00284-4
  10. J. J. Lee, P. J. Tirman, Y. Chang, H. K. Ryeom, S. K. Lee, Y. S. Kim, and D. S. Kang, Korean J. Radiol. 1, 142 (2000). https://doi.org/10.3348/kjr.2000.1.3.142
  11. J. H. Maki, M. R. Prince, F. J. Londy, and T. L. Chenevert, J. Magn. Reson. Imaging 6, 642 (1996). https://doi.org/10.1002/jmri.1880060413
  12. W. A. Willinek, D. R. Hadizadeh, M. von Falkenhausen, H. Urbach, R. Hoogeveen, H. H. Schild, and J. Gieseke, J. Magn. Reson. Imaging 27, 1455 (2008). https://doi.org/10.1002/jmri.21354
  13. S. J. Bae, C. H. Lim, B. R. Park, W. J. Shin, and J. S. Kim, J. Korea Contents Assoc. 10, 215 (2010).