DOI QR코드

DOI QR Code

An Investigation of Induction Motor Saturation under Voltage Fluctuation Conditions

  • Received : 2016.09.10
  • Accepted : 2017.03.16
  • Published : 2017.06.30

Abstract

Nowadays power quality effects on induction motors have gained significant attention due to wide application of these motors in industry. The impact of grid voltage fluctuations on the induction motor behavior is one of the important issues to be studied by power engineers. The degree of iron saturation is a paramount factor affecting induction motors performance. This paper investigates the effects of voltage fluctuations on motor magnetic saturation based on the harmonic content of airgap flux density by finite element method (FEM). It is clarified that the saturation harmonics under normal range of voltage fluctuations have not changed significantly with respect to pure sinusoidal conditions. Experimental results on a 1.1 kW, 380 V, 50 Hz, 2 pole induction motor are employed to validate the accuracy of the simulation results.

Keywords

References

  1. H. Moghadam Banayem, A. Doroudi, and M. Poormonfared Azimi, Electric Power Components and Systems 43, 412 (2015). https://doi.org/10.1080/15325008.2014.987334
  2. Kyung-Won Jeon, Yong-Jae Kim, and Sang-Yong Jung, J. Magn. 18, 212 (2013). https://doi.org/10.4283/JMAG.2013.18.2.212
  3. R. H. C. Palácios, I. N. da Silva, A. Goedtel, and W. F. Godoy, Electr. Power Syst. Res. 127, 249 (2015). https://doi.org/10.1016/j.epsr.2015.06.008
  4. K. Komeza and M. Dems, IEEE Trans. Ind. Electron. 59, 2934 (2012). https://doi.org/10.1109/TIE.2011.2168795
  5. S. Tennakoon, S. Perera, and D. Robinson, IEEE Trans. Power Delivery 23, 1207 (2008). https://doi.org/10.1109/TPWRD.2007.908788
  6. M. GhasemiNezhad, A. Doroudi, and S. Hosseinian, International Power System Conference (PSC), Teharn, Iran (2009).
  7. M. GhasemiNezhad, A. Doroudi, and S. H. Hosseinian, Amirkabir Int. J. Electr. Electron. Eng. 44, 53 (2012).
  8. J. Baptista, J. Gonçalves, S. Soares, A. Valente, R. Morais, J. Bulas-Cruz, and M. J. Reis, Electrical Machines (ICEM), 2010 XIX International Conference on, IEEE (2010) pp 1-6.
  9. P. Gnaciliski and M. Pepliliski, IET Electric. Power Appl. 8, 287 (2014). https://doi.org/10.1049/iet-epa.2013.0422
  10. M. Ghaseminezhad, A. Doroudi, S. H. Hosseinian, and A. Jalilian, IET Generation, Transmission & Distribution. 11, 512 (2017). https://doi.org/10.1049/iet-gtd.2016.1063
  11. C. Lee, Trans. Am. Ins. Electr. Eng. 80, 597 (1961).
  12. B. Chalmers and R. Dodgson, IEEE Trans. Power Appar. Syst. (1971) pp 564-569.
  13. X. Tu, L.-A. Dessaint, R. Champagne, and K. Al-Haddad, IEEE Trans. Ind. Electron. 55, 2798 (2008). https://doi.org/10.1109/TIE.2008.925644
  14. J. P. G. de Abreu and A. Emanuel, 2001 IEEE Industrial and Commercial Power Systems Technical Conference. Conference Record (Cat. No. 01CH37226), IEEE (2001) pp 105-114.
  15. R. Dugan, M. F. McGranaghan, and H. W. Beaty, Electric Power Systems Quality, McGraw-Hill (2002).
  16. M. Amrhein and P. T. Krein, IEEE Trans. Energy Convers. 25, 339 (2010). https://doi.org/10.1109/TEC.2010.2046998
  17. J. Cheaytani, A. Benabou, A. Tounzi, M. Dessoude, L. Chevallier, and T. Henneron, IEEE Trans. Magn. (2015) pp 1-4.
  18. J.-J. Lee, Y.-K. Kim, H. Nam, K.-H. Ha, J.-P. Hong, and D.-H. Hwang, IEEE Trans. Magn. 40, 762 (2004). https://doi.org/10.1109/TMAG.2004.825445
  19. S. Nandi, IEEE Trans. Ind. Appl. 40, 1058 (2004). https://doi.org/10.1109/TIA.2004.830764
  20. Y. Liao and T. A. Lipo, Electric Machines and Power Systems 22, 155 (1994). https://doi.org/10.1080/07313569408955560
  21. G. Bottiglieri, A. Consoli, and T. A. Lipo, IEEE Trans. Energy Convers. 22, 819 (2007). https://doi.org/10.1109/TEC.2007.895867
  22. General guide on harmonics and interharmonics measurements for power supply systems and equipment connected thereto, IEC 61000-4-7.
  23. J. Faiz and B. M. Ebrahimi, Prog. Electromagn. Res. 64, 239 (2006). https://doi.org/10.2528/PIER06080201

Cited by

  1. Diagnosis of rotor broken bars faults in squirrel cage induction motor using continuous wavelet transform pp.0332-1649, 2018, https://doi.org/10.1108/COMPEL-11-2017-0487