DOI QR코드

DOI QR Code

Synthesis and Optical Properties of TiO2/TiOF2 Composite Powder with Controlled Phase Fractions via an Ultrasonic Spray Pyrolysis Process

초음파 분무 열분해 공정을 이용한 TiO2와 TiOF2 복합체 분말의 합성과 상 분율에 따른 광학적 성질

  • Hwangbo, Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, Woo-Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 황보영 (서울과학기술대학교 신소재공학과) ;
  • 박우영 (서울과학기술대학교 신소재공학과) ;
  • 이영인 (서울과학기술대학교 신소재공학과)
  • Received : 2017.03.20
  • Accepted : 2017.03.30
  • Published : 2017.06.27

Abstract

Photoelectron-hole separation efficiency plays an important role in the enhancement of the photocatalytic activity of photocatalysts towards the degradation of organic molecules. In this study, $TiO_2/TiOF_2$ heterostructured composite powders with suitable band structures, which structures are able to separate photoelectron-hole pairs, have been synthesized using a simple and versatile ultrasonic spray pyrolysis process. In addition, their phase volume fractions have been controlled by varying the pyrolysis temperature from $400^{\circ}C$ to $800^{\circ}C$. The structural and optical properties of the synthesized powders have been characterized by X-ray diffraction, scanning electronic microscopy and UV-vis spectroscopy. The powder with a phase volume ratio close to 1, compared with single $TiOF_2$ and other composite powders with different phase volume fractions, was found to have superior photocatalytic activity for the degradation of rhodamine B. This result shows that the $TiO_2/TiOF_2$ heterostructure promotes the separation of the photoinduced electrons and holes and that this powder can be applicable to environmental cleaning applications.

Keywords

References

  1. M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Chem. Rev., 95, 69 (1995). https://doi.org/10.1021/cr00033a004
  2. Y. M. Lin, D. Z. Li, J. H. Hu, G. C. Xiao, J. X. Wang, W. J. Li and X. Z. Fu, J. Phys. Chem. C, 116, 5764 (2012). https://doi.org/10.1021/jp211222w
  3. C. Hyeok, J. K. Yong, S. V. Rajender and D. D. Dionysios, Chem. Mater., 18, 5377 (2006). https://doi.org/10.1021/cm0615626
  4. H. Melhem, P. Simon, L. Beouch, F. Goubard, M. Boucharef, C. D. Bin, Y. Leconte, B. Ratier, N. Herlin- Boime and J. Boucle, Adv. Energy Mater., 1, 908 (2011). https://doi.org/10.1002/aenm.201100289
  5. M. D. Hernandez-Alonso, F. Fresno, S. Suarez and J. M. Coronado, Energy Environ. Sci., 2, 1231 (2009). https://doi.org/10.1039/b907933e
  6. K. Zhu, X. Liu, J. Du, J. Tian, Y. Wang, S. Liu and Z. Shan, J. Mater. Chem. A., 3, 6455 (2015). https://doi.org/10.1039/C5TA00236B
  7. H. Yang and X. Zhang, J. Mater. Chem., 19, 6907 (2009). https://doi.org/10.1039/b911709a
  8. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 293, 269 (2001). https://doi.org/10.1126/science.1061051
  9. H. Irie, S. Miura, K. Kamiya and K. Hashimoto, Chem. Phys. Lett., 457, 202 (2008). https://doi.org/10.1016/j.cplett.2008.04.006
  10. X. Zhang, L. Zhang, T. Xie and D. Wang, J. Phys. Chem. C, 113, 7371 (2009). https://doi.org/10.1021/jp900812d
  11. H. Huang, D. Li, Q. Lin, W. Zhang, Y. Shao, Y. Chen, M. Sun and X. Fu, Environ. Sci. Technol., 43, 4164 (2009). https://doi.org/10.1021/es900393h
  12. M. V. Reddy, S. Madhavi, G. V. S. Rao and B. V. R. Chowdari, J. Power Sources, 162, 1312 (2006). https://doi.org/10.1016/j.jpowsour.2006.08.020
  13. B. Li, D. Wang, Y. Wang, B. Zhu, Z. Gao, Q. Hao, Y. Wang and K. Tang, Electrochim. Acta, 180, 894 (2015). https://doi.org/10.1016/j.electacta.2015.09.034
  14. M. He, Z. Wang, X. Yan, L. Tian, G. Liu and X. Chen, J. Power Sources, 306, 309 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.032
  15. A. B. Murphy: Sol. Energ. Mat. Sol. Cells, 91, 1326 (2007). https://doi.org/10.1016/j.solmat.2007.05.005
  16. J. Wang, F. CaO, Z. Bian, M. K. H. Leung and H. Li, Nanoscale, 6, 897 (2014). https://doi.org/10.1039/C3NR04489K
  17. J. Zhu, D. Zhang, Z. Bian, G. Li, Y. Huo, Y. Lu and H. Li, Chem. Commun., 5394 (2009).
  18. K. Vasanth Kumar, K. Porkodi and F. Rocha, Catal. Commun., 9, 82 (2008). https://doi.org/10.1016/j.catcom.2007.05.019