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Abstract
Recent GPUs have adopted cache memory to benefit general-purpose GPU (GPGPU) programs. However, unlike CPU

programs, GPGPU programs typically have considerably less temporal/spatial locality. Moreover, the L1 data cache is

used by many threads that access a data size typically considerably larger than the L1 cache, making it critical to bypass

L1 data cache intelligently to enhance GPU cache performance. In this paper, we examine GPU cache access behavior

and propose a simple hardware-based GPU cache bypassing method that can be applied to GPU applications without

recompiling programs. Moreover, we introduce a hybrid method that integrates static profiling information and hard-

ware-based bypassing to further enhance performance. Our experimental results reveal that hardware-based cache

bypassing can boost performance for most benchmarks, and the hybrid method can achieve performance comparable to

state-of-the-art compiler-based bypassing with considerably less profiling cost.
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Keywords: GPU; CUDA; Cache bypassing; Memory traffic; Profiling

I. INTRODUCTION

Graphics processing units (GPUs) have become increas-

ingly popular for general-purpose computing on GPUs

(GPGPUs). Modern GPUs can support massive parallel

computing with thousands of cores and extremely high-

bandwidth external memory systems. Leading GPU ven-

dors like NVIDIA and AMD have released software

development kits such as Compute Unified Device Archi-

tecture (CUDA) and OpenCL, allowing programmers to

use C-like programming language to write general-pur-

pose code for execution on GPUs.

To accommodate the data locality in general-purpose

high-performance applications, major GPU vendors have

introduced cache memory in conjunction with the shared

memory to benefit a wide variety of GPGPU applications.

For example, L1 data cache and the unified L2 cache are

included in NVIDIA Fermi and Kepler architectures, in

which the sizes of the L1 data cache and shared memory

are configurable while the aggregate on-chip memory

size is fixed. Although cache memory can effectively

hide access latency for data with good temporal and/or

spatial locality for CPUs and GPUs, GPGPU applications

may exhibit divergent memory access patterns from tra-

ditional CPU applications. For example, recent study

reveals that GPU caches have counter-intuitive perfor-

mance tradeoffs [1]. Moreover, due to the large number

of threads available, the GPU L1 data cache is shared by

all threads running on the same SM, enabling data with

high reuse potential to be evicted by other data with no or

low reuse potential. Therefore, it is critical to explore tech-

niques to exploit on-chip cache memory effectively to
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boost GPU performance and/or energy efficiency. Specif-

ically, for embedded and mobile GPU applications, it is

also crucial to develop cost-effective optimization meth-

ods for boosting performance and/or energy efficiency.

Cache bypassing is a technique to reduce cache pollu-

tion by not storing data with no or low locality into the

cache. Due to the relative small size of the GPU L1 data

cache as compared to the large amount of data size of a

typical GPGPU program, cache bypassing is especially

attractive to GPUs. Recently, Xie et al. [2] proposed a

compiler-based GPU cache bypassing framework, in

which each load instruction is set to be with the ca or cg

cache operator, based on light-weight profiling. By

default, on the CUDA platform, global memory access is

cached in L1 and L2 caches (with the compilation flag of

-Xptxas -dlcm=ca). The data can also be configured to be

cached only in the L2 cache (-Xptxas -dlmc=cg) [3]. This

approach, however, incurs significant cost to profile the

GPU cache and memory access patterns, and to develop

the optimization plan. In addition, the program must be

recompiled to enable the bypassing, which can impede its

use on real applications.

To address this problem, this paper proposes to

develop a pure hardware-based cache bypassing method

for GPU applications, which can be applied to any GPU

code at run time. In addition, we also study a hybrid

method to combine the profiling knowledge and the hard-

ware-based bypassing to enable more intelligent cache

bypassing applications without incurring significant costs

as the compiler-based approach [2].

II. BASELINE GPU ARCHITECTURE

A GPU typically consists of an array of highly threaded

streaming multiprocessors (SMs), and each SM has many

streaming processors (SPs) that can execute threads in

parallel. When a GPU kernel is launched, the runtime

creates massive concurrent GPU threads organized hier-

archically. Many threads (32 in NVIDIA GPU) with con-

secutive IDs compose a warp (or wavefront), multiple

warps form a thread block, and all thread blocks compose

a grid. A warp is the unit in GPU scheduling; in which all

threads proceed in a lockstep fashion.

The L1 data cache and the shared L2 cache are included

in the CUDA devices with compute capability of version

2.0 and higher. Each CUDA SM has its own L1 data

cache, as shown in Fig. 1. The size of the L1 data cache

can be configured to be either 16 kB or 48 kB, and the L2

unified cache has the size of 768 kB in the Fermi archi-

tecture [4]. In Kepler, the L1 data cache can also be con-

figured to 32 kB as well. The L1 data cache can be enabled

or disabled at compile time.

When the L1 data cache is enabled, the load instructions

access data through the L1 data cache, while the store

instructions write through the data to the L2 cache and the

corresponding copy in the L1 data cache is invalidated [1].

Since the stored instructions bypass the L1 data cache by

default, we focus on studying the load instructions in this

work.

III. MOTIVATION

A. Global Load Utilization Rate

The 32 threads in a warp access the global memory in a

coalesced pattern. Assuming that each thread needs to

fetch 4 bytes, if the data needed by each thread are well

coalesced, this load operation can be serviced by one

128-byte transaction, as shown in Fig. 2(a). In this case,

all the data in the memory transaction are useful, thus the

utilization rate (or efficiency) of this load, which rep-

resents the percentage of bytes transferred from global

memory that are used by the GPU, is 100% (128/128).

However, when the memory access pattern changes

slightly, as shown in Fig. 2(b) and 2(c), the address range

becomes 96 to 223, which spans across the boundary of

128 bytes. In this case, two 128-byte transactions are

needed to transfer data needed by threads. Therefore, the

Fig. 1. GPU memory system with L1 and L2 caches.

Fig. 2. Examples of different memory access patterns that lead
to various global load utilization rates.
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utilization rates of these two transactions are 25% and

75%, respectively, resulting in a 50% (128/256) overall

utilization rate. This indicates half of the memory traffic,

generated by these two load operations, are useless and

unnecessary if they are not reused, which may decrease

performance and energy efficiency for GPGPU computing.

The example of low load utilization rates in Fig. 2 may

be caused by improper mapping between threads and

memory addresses, which, sometimes but not always, can

be avoided by programmers. However, divergences in the

CUDA kernel, which are caused by algorithms and are

generally difficult to eliminate, can also lead to such load

operations with low utilization rates.

Moreover, in the CUDA programming model, if the

required data are cached in L1 and L2 data caches, mem-

ory access is done by 128-byte transactions. However, if

the data are only stored in L2 cache (i.e., bypassing the

L1 data cache), 32-byte transactions are used instead [3].

Therefore, for the load operations depicted in Fig. 2(b)

and 2(c), assuming the data are not reused from the

cache, using only 32-byte transactions can reduce over-

fetching of useless data and therefore reduce memory

traffic. Bypassing the L1 data cache for such kinds of

load operations may be a better choice to reduce memory

bandwidth pressure and to attain better performance. At

the same time, since the L1 data cache is small and is

shared by all the SPs in an SM, bypassing the L1 data

cache may leave more space to store data with higher uti-

lization rates or locality, which can reduce cache pollu-

tion and therefore benefit performance.

B. Data Reuse Times in GPU L1 Data Cache

The GPGPU applications usually operate on a massive

volume of data. However, cache line usage among data

with different addresses may differ significantly. This is

not only because GPGPU applications can exhibit irregu-

lar data access patterns, but also because effective L1

data cache space per SP is too small. Therefore, even if

some data are reused within a warp, such data may have

been replaced from the cache by other data from the same

warp or from other warps from the same thread block

before they can be reused, resulting in cache misses and

hence increasing global memory access.

Fig. 3 shows the data reuse distribution in the L1 data

cache across different SMs for the benchmarks gaussian

and srad, both of which are selected from Rodinia bench-

mark suite [5]. The experimental configuration and the

evaluation methodology are detailed in Section V. In this

figure, each bar indicates the number of different data

addresses that are reused in the L1 data cache by a certain

number of times, which varies from 0, 1, up to 15, or

more. As we can observe, the number of different

addresses reused in the L1 data cache varies slightly

across different SMs because of the GPU’s SIMD execu-

tion model. We also find for both benchmarks a consider-

able volume of data addresses are never reused or are

only reused for a limited number of times. For example,

in gaussian, nearly half of the addresses are used for just

once, while in the srad most of the addresses are not

reused at all. The considerably low temporal locality

from GPGPU applications is quite different from typical

CPU applications that tend to have good temporal local-

ity; therefore, we must explore novel cache management

techniques for GPUs.

For data that are never reused, loading the data into the

cache is helpful to reduce neither latency nor memory

bandwidth. To the contrary, bypassing them may reduce

cache pollution. Even if the data are reused a few times,

loading them into the L1 data cache may increase global

memory traffic if load utilization rate is low. This may

negate the benefit of a small number of cache hits. There-

fore, it becomes viable to bypass those data that are never

reused or only reused a few times to reduce memory

bandwidth pressure and cache pollution for GPUs.

IV. GPU L1 DATA CACHE BYPASSING

A. Bypassing by Addresses vs. by Instructions

By default, on the CUDA platform, global memory

accesses are cached in L1 and L2 caches (with the compi-

lation flag of -Xptxas -dlcm=ca). The data can also be

configured to be cached only in the L2 cache (-Xptxas

-dlmc=cg) [3]. The ca and cg cache operators for mem-

ory load instructions are used to support such configura-

tions [6]. Such a mechanism can be used to implement

cache bypassing by compilers.

While Xie et al.’s approach [2] can automatically ana-

Fig. 3. The data reuse distribution in the L1 data cache. (a) Data
reuse distribution of gaussian benchmark. (b) Data reuse
distribution of srad benchmark.
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lyze the GPU code and select global load instructions for

cache access or bypassing intelligently, enabling cache

bypassing decisions based on each global load instruction

may lead to suboptimal results. This is because each

global load instruction can access a wide range of data

addresses that can have distinct reuse behavior. Bypass-

ing at the load instruction level is only effective if the

data accessed by load instruction have uniform locality.

For instructions that access data with diverse reuse

characteristics, enabling bypassing decisions at the instruc-

tion level is too coarse-grained, i.e., it can only choose

between bypassing or caching all data accessed by this

instruction, not according to the subset of data access

with different temporal and spatial locality. To address

this deficiency, in this paper, we study an address based

cache bypassing method that enables the GPU to bypass

data at finer granularity.

Fig. 4 shows, according to each load instruction of the

benchmark gaussian, the percentage of the memory

access to different addresses that have low L1 cache line

reuse time and low load utilization rate (see Eq. (1) in

Section IV-B for details).

We focus on analyzing 8 load instructions in 2 kernels

(Id 1-6 of kernel _Z4Fan2PfS_S_iii and Id 1-2 of kernel

_Z4Fan1PfS_ii) from gaussian. We find that each global

load instruction has a varying fraction of data accesses that

should or should not be bypassed. For example, 65.3% of

data accessed by ldl from kernel _Z4Fan2PfS_S_iii

should be bypassed, indicating 34.7% of data accessed by

this load should not be bypassed. Therefore, simply

bypassing all the access from one load instruction will

cause performance overhead for those data access that

should not be bypassed. Similarly, simply caching all

access from one load instruction will lose the perfor-

mance improvement opportunity for those data access

that should be bypassed. To facilitate finer-grained con-

trol of cache bypassing, in this study, we chose to imple-

ment the GPU cache bypassing based on individual data

addresses instead of the load instructions.

B. Heuristic for GPU Cache Bypassing

We propose to use profiling to identify LI data cache

access that should be bypassed. We focus on bypassing

the data accesses that have low load utilization rates and

low reuse times in the LI data cache, with the objective of

minimizing global memory traffic. More specifically, for

each data address A that is accessed by a global load, we

use profiling to collect its load utilization rate U and the

reuse time R. We use Eq. (1) to determine which data

access should be bypassed.

U × (1 + R) < 1 (1)

In the above equation, (1 + R) represents the number of

times A is accessed from the LI data cache, including the

first time when it is loaded into the cache, i.e., 128 bytes

are transferred from global memory. If U is 1, then this

product is at least 1, even if A is not reused at all, indicat-

ing A should not be bypassed. On the other hand, if U is

less than 1, and if R is 0 or a small integer (e.g., 1, 2, 3)

such that the condition in Eq. (1) holds, then storing A

into the LI data cache will increase global memory traffic

as compared to bypassing this access from the LI data

cache. Therefore, in this case, bypassing A can reduce

global memory traffic, potentially leading to better per-

formance or energy efficiency. The reduction of cache

pollution will also be a positive side effect of bypassing

this data from the LI data cache.

Our cache bypassing method considers spatial locality

(i.e., U) and temporal locality (i.e., R). For example, for

the memory access pattern with low load utilization rate

as depicted in Fig. 2(b), i.e., U = 25%, this address must

be reused at least three times in the LI data cache (i.e.,

) to not be bypassed. In contrast, for the memory

access pattern with high load utilization rate that is shown

in Fig. 2(c), i.e., U = 75%, if this address is reused at

least once from the LI data cache (i.e., ), then it

should not be bypassed.

To support the profiling-based method, we modified

the GPGPU-Sim [7] by adding the functions to generate

detailed statistics of LI data cache access and enable the

LI data cache model to selectively bypass identified data

addresses. The detailed statistics results include informa-

tion of data reuse time and load utilization rate of each

memory access with different addresses, which are auto-

matically analyzed by scripts to generate the list of

bypassing addresses for each SM separately. The bypass-

ing addresses are annotated and the benchmarks are sim-

ulated again with GPGPU-Sim [7] with the bypassing

function enabled to implement the profiling-based cache

bypassing method.

C. Hardware-based Bypassing

Based on the observations that the number of memory

accesses of one load instruction distributes from 1 to 32

and that the distribution of the numbers of accesses per

instruction is different among different kernels and

benchmarks, we propose a hardware-based bypassing

R 3≥

R 1≥

Fig. 4. Percentage of accesses that should be bypassed of each
load instruction in the kernels of gaussian benchmark.
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method, in which the load operations with a large number

of memory accesses are bypassed, because the larger the

number of accesses the worse the spatial locality. Fig. 5

shows the distribution of percentages of load operations

with different numbers of memory accesses among the

total number of load operations.

In this hardware-based bypassing scheme, we intro-

duce a threshold register, as shown in Fig. 6, to store the

bypassing threshold number of memory accesses per load

instruction. For example, if the threshold register is set to

the value of 16, at runtime, all the memory access, gener-

ated by the load instructions with the number of memory

access larger than 16 per load operation, will bypass the

Ll data cache.

D. Hybrid Selective Bypassing

In the hardware-based bypassing scheme, we bypass

memory access from load operations that generate a rela-

tively large number of memory access, because spatial

locality is low in such cases. However, the temporal

locality is not considered part of the hardware-based

bypassing method. We also observe that some memory

access from load operations with a large number of mem-

ory accesses may have good temporal locality, making it

profitable to cache these memory accesses rather than to

bypass them. Therefore, we propose a hybrid selective

bypassing method, in which we collect the average num-

ber of reuse time and average utilization rate of the mem-

ory access in each memory access number distribution (1

to 32), and we use the same heuristic for the profiling-

based bypassing method to evaluate whether a specific

distribution should be bypassed.

Table 1 shows the profiling information of a bench-

mark streamcluster (from the Rodinia benchmark suite

[5]) needed by the hybrid selective bypassing method. In

Table 1, the first column shows the distribution of mem-

ory access number (1 to 32); in this benchmark, there is

no load operation with more than 13 memory accesses.

The second and third columns show the average reuse

times and utilization rate of the memory access in each

distribution in the first column. The last column shows

the result of (R+1) * U of each distribution. As shown in

Table 1, the load operations with low spatial locality can

have good temporal locality, such as those with 8, 9 and

11 memory accesses. Indicating that, in this benchmark,

these load operations shall not be bypassed, while load

operations with relatively better spatial locality but worse

temporal locality, such as those with 6 memory accesses

should be bypassed. In this hybrid selective bypassing

method, to find the best bypassing threshold, the (R+1) *

U value of each distribution is used as the bypassing

threshold. For instance, if the (R+1) * U value of 0.62 is

chosen as the threshold, the distribution with the value

larger than 0.62 (1, 2, 3, 4, 7, 8, 9 and 11) will be cached,

while the rest will be bypassed.

In the hybrid selective cache bypassing, the threshold

in the bypassing threshold register is still the same as the

hardware-based bypassing scheme, i.e., 16 memory

accesses per load operation. The difference is that in the

hybrid selective scheme, the profiling information is first

used to annotate those that will not be bypassed, includ-

ing the load operations that may have more than 16 mem-

ory accesses but are highly reused, so that U * (l + R) is

Fig. 5. Distribution of number of memory access.

Fig. 6. Hardware-based bypassing scheme.

Table 1. Hybrid Selective bypassing analysis of the benchmark
streamcluster

Memory 

access number

Average 

reuse times

Average 

utilization rate
(R+1)*U

1 9.08 0.62 6.28

2 0.12 0.56 0.63

3 0.22 0.51 0.62

4 0.24 0.66 0.82

5 0.78 0.35 0.61

6 0.73 0.29 0.50

7 0.10 0.79 0.87

8 9.54 0.96 10.16

9 20.00 0.25 5.25

10 1.29 0.26 0.60

11 20.00 0.25 5.25

12 0 0.61 0.61

13 0 0.58 0.58

14 - 32 0 0 0
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larger than 1 (Eq. (1)). The load operations that are not

annotated are candidates for cache bypassing at runtime

by using the hardware-based bypassing.

V. EVALUATION METHODOLOGY

In this study, we use the GPGPU-Sim [7] simulator to

implement and evaluate the proposed cache bypassing

scheme. Table 2 shows the default configuration of the

simulator, which simulates the Fermi GTX 480 platform.

The benchmarks used in this study are from the Rodima

[5] benchmark suite.

VI. EXPERIMENT RESULTS

A. Performance Results

Fig. 7 shows the normalized performance results of

different benchmarks with different bypassing methods.

The results are normalized to the performance of a bench-

mark simulated without using any bypassing method. As

shown in the results, the profiling-based and hybrid selec-

tive bypassing methods can boost performance for all

benchmarks, while the hardware-based bypassing method

can boost performance of most of the benchmarks. This

is because the hardware-based method uses a bypassing

threshold only based on how many memory accesses one

load operation generates, i.e., the spatial locality, while

the other two methods also consider temporal locality.

As we can observe, the performance improvement of

different cache bypassing schemes varies across different

benchmarks due to different memory access characteris-

tics. In general, hardware-based bypassing outperforms

profiling-based scheme for most of the benchmarks,

because hardware-based bypassing can exploit runtime

information, which is more accurate than profiling-based

information. However, one exception is the benchmark

MG, for which hardware-based bypassing has perfor-

mance worse than either profiling-based method or base-

line without bypassing at all. As shown in Fig. 5, MG has

a sizable number of loads whose memory accesses are more

than 16 yet they still have temporal locality. Therefore,

the hardware-based chooses to simply bypass all of them,

which negatively impacts performance. In comparison, the

profiling-based method and the hybrid selective method

can consider the temporal locality based on the profiling

information, which helps to boost performance of MG.

B. Comparison with Compiler-Based Instruction
Bypassing Scheme

Fig. 8 shows the normalized performance results of the

Hybrid Selective bypassing method and the Compiler-

Based bypassing method. Results reveal that two bypass-

ing methods can achieve generally the same perfor-

mance, while the improvement in the Compiler-Based

method is slightly better. This is because, in the Com-

piler-Based method, the dependencies between different

load instructions when the decision of bypassing one

instruction is made, while this is not considered in the

Hybrid Selective bypassing method.

However, both bypassing methods need to use profil-

Fig. 7. Normalized performance results of different bypassing
methods (the results of each bypassing method are normalized
to the results without using bypassing). 

Table 2. Default GPGPU-Sim configuration

Number of SMs 15

Number of 32-bit registers per SM 32768

Size of L1 data cache per SM 16 kB

L1 data cache block size 128 B

L1 data cache associativity 4

Size of shared memory per SM 48 kB

Size of L2 cache 768 kB

DRAM latency cycles 100

Core clock frequency 700 MHz

Fig. 8. Normalized performance results of Hybrid Selective and
Compiler-Based bypassing methods (the results of each bypassing
method are normalized to the results without using bypassing).
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ing information to generate the bypassing patterns. The

Compiler-Based method uses profiling information to

decide which load instruction(s) to bypass, while the

Hybrid Selective method enables/disables load instruc-

tion(s) with a specific number of memory accesses (1–32).

Table 3 shows the profiling costs of these two methods.

The numbers in Table 3 indicate the times of execution of

a benchmark/program to get the profiling information for

each bypassing method. As the results reveal, the Hybrid

Selective bypassing method needs much less profiling

cost, while it can achieve performance improvement

comparable to the Compiler-Based bypassing method. 

VII. RELATED WORK

As GPUs are widely used in accelerating GPGPU

applications, there have been an increasing number of

studies to optimize GPU performance. Various compiler

and runtime algorithms were proposed to improve the

efficiency of GPU global memory [8-16] or shared mem-

ory [17, 18]. However, none of these studies targeted

GPUs with caches.

GPU Cache Bypassing. Jia et al. [1] characterized

application performance on GPUs with caches and pro-

posed a compile-time algorithm to determine whether

each load should use the cache. Their study first revealed

that unlike CPU caches, the LI cache hit rates for GPUs

did not correlate with performance. Recently, Xie et al.

[2] studied a compiler-based algorithm to judiciously

select global load instructions for cache access or bypass.

Both Jia et al. and Xie et al.’s approaches can achieve

performance improvement through cache bypassing.

However, both approaches make cache bypassing deci-

sions based on each global load instruction, which can

access a variety of data addresses with diverse temporal

and spatial locality. In contrast, our method is based on

data addresses, not load instructions. This gives us finer-

grained control on which data to be cached or bypassed to

further enhance performance and energy efficiency.

Mekkat et al. [19] proposed Heterogeneous LLC (last-

level cache) Management (HeLM), which can throttle

GPU LLC access and yield LLC space to cache sensitive

CPU applications. The HeLM takes advantage of the

GPU’s tolerance for long memory access latency to pro-

vide an increased share of the LLC to the CPU applica-

tion for better performance. There are several major

differences between HeLM [19] and our work. HeLM

targets the shared LLCs in integrated CPU-GPU architec-

tures, while our study focused on bypassing LI data

caches in GPUs. Moreover, HeLM is a hardware-based

approach that needs additional hardware extension to

monitor thread-level parallelism (TLP) available in the

GPU application. In contrast, our cache bypassing

method is a software-based approach that leverages pro-

filing information statically, which is simple and low cost

and is particularly useful for embedded and mobile

GPUs. Moreover, our method is complementary to the

hardware-based HeLM, which can be used in conjunction

with HeLM to further improve the GPU performance or

energy efficiency in integrated CPU-GPU architecture.

Chen et al. [20] designed a hardware sampling based

method on GPUs for LI data cache bypassing and used

warp throttling to reduce contention. Tian et al. [21]

implemented a PC-based dynamic GPU cache bypassing

predictor. Xie et al. [22] recently studied a coordinated

static and dynamic cache bypassing, in which a subset of

thread blocks is analyzed at runtime to bypass the LI

cache. Li et al. [23] proposed to use locality monitoring

mechanism to dynamically bypass LI data caches for

GPUs. Compared to all these studies that require non-

trivial hardware support, our method is based on a con-

siderably simpler hardware extension, which consists of a

threshold register and a comparator. Also, our method

can be easily integrated with the profiling-based method

to further boost efficiency of the GPU LI data cache

bypassing to enhance performance.

CPU Cache Bypassing. Cache bypassing has been

extensively studied for CPUs in the past. Some architec-

tures have introduced ISA support for cache bypassing,

for example HP PA-RISC and Itanium. Both hardware-

based [24-28] and compiler-assisted [29, 30] cache bypass-

ing techniques have been proposed to reduce cache pollu-

tion and boost performance.

However, most CPU cache bypassing approaches use

hit rates as performance metrics to guide cache bypass-

ing, which may not be applicable to GPUs due to the dis-

tinct architectural characteristics and the non-correlation

of GPU performance with data cache hit rates [1].

VIII. CONCLUSIONS

While GPUs have become popular in high perfor-

mance computing, GPU applications exhibit different

program behavior than traditional CPU programs. To

support GPGPU applications with various data access

patterns, recent GPUs such as NVIDIA Fermi and Kepler

Table 3. Profiling costs of Hybrid Selective and Compiler-Based bypassing methods

BFS CFD GAU HW KM LUD MG NW SRAD SC Average

Hybrid Selective 24 30 21 7 1 1 36 3 2 13 13.8

Compiler-based 38 949 25 1379 2 1319 77 381 101 46 431.7
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have introduced cache memory. While cache memories

are generally useful to boost memory performance for

CPUs, recent studies reveal that the cache hit rates are not

correlated to GPU performance [1] due to the unique

architectural features and program characteristics of

GPUs. Therefore, it is critical to study how to exploit

cache memory effectively for GPGPU applications. Spe-

cifically, due to the increasing use of GPUs in the embed-

ded domain, it is crucial to develop a cost-effective

method to use GPU caches efficiently for attaining better

performance with less compilation, profiling, or optimiza-

tion costs.

In this study, we examined a simple yet effective hard-

ware-based method to bypass L1 data cache for GPGPU

applications without recompiling programs. To exploit

runtime and profiling information, we also explored a

hybrid method, which can achieve better performance. Our

evaluation indicates that the hardware-based cache bypass-

ing boosts performance for most GPU benchmarks. The

hybrid method can achieve performance comparable to

state-of-the-art compiler-based bypassing approach [2],

while reducing profiling and optimization costs significantly.
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