A-Frequent Hypercyclicity in an Algebra of Operators

Ka Kyung Ahn[†]

Abstract

We study a notion of A-frequent hypercyclicity of linear maps between the Banach algebras consisting of operators on a separable infinite dimensional Banach space. We prove a sufficient condition for a linear map to satisfy the A-frequent hypercyclicity in the strong operator topology.

Keywords: Operator Algebras, Strong Operator Topology, Frequently Hypercyclicity

1. Preliminaries

Definition 1.1. A subfamily \mathcal{A} of subsets of \mathbb{Z}_+ is called a hypercyclicity set if it satisfies

- $1. \varnothing \not\subseteq \mathcal{A}$
- 2. for any $A \subseteq \mathcal{A}$ if $A \subseteq B$, then $B \subseteq \mathcal{A}$,
- 3. there is a disjoint sequence (A_k) in \mathcal{A} such that for any $m \in A_k$, any $n \in A_i$, $m \neq n$,

$$|m-n| \geq \max\{k,j\}.$$

If \mathcal{A} satisfies 1 and 2, it is called a non-trivial hereditarily upward family.

Definition 1.2. Let \mathcal{A} be a non-trivial hereditarily upward family and let $T \in \mathcal{L}(X)$. The operator T is said to be \mathcal{A} -frequently hypercyclic if there is a vector $x \in X$ such that for any non-empty open set U of X, the return set

$$N(x, U) = \{ n \in \mathbb{N} \mid T^n x \in U \}$$

is in \mathcal{A} . Such a vector x is called an \mathcal{A} -frequently hypercyclic vector for T.

Example 1.3. 1. If \mathcal{A} is the family of infinite subsets of \mathbb{Z}_+ , the \mathcal{A} -frequently hypercyclic operators are hypercyclic operators.

College of Humanities and General Education, Soekyeong University, Seoul 02713, Korea.

[†]Corresponding author : kkahn@skuniv.ac.kr (Received : May 8, 2017, Accepted : June 25, 2017)

- 2. An operator T is frequently hypercyclic, if \mathcal{A} is the family of positive lower density sets.
- 3. An operator T is q-frequently hypercyclic if \mathcal{A} is the family of positive lower q-density sets^[1]. Similarly, if \mathcal{A} is the family of positive lower (m_k) -density sets, it defines an (m_k) -hypercyclic operators^[2].

Proposition 1.4. [3] Let X be an infinite-dimensional separable Banach space. For a non-trivial hereditarily upward family \mathcal{A} , an operator T is \mathcal{A} -frequently hypercyclic, then \mathcal{A} is a hypercyclicity set.

Theorem 1.5.^[3] Let X be a separable Banach space, \mathcal{A} be a hypercyclicity set and $T \in \mathcal{L}(X)$. Suppose that there exist a dense subset Y_0 of X and $S: Y_0 \to Y_0$, and disjoint sets $A_k \in \mathcal{A}$, $k \geq 1$, such that for each $y \in Y_0$,

- 1. TS = 1, the identity on Y_0 ,
- 2. there exists $k_0 \ge 1$ such that $\sum_{i \in A_k} S^n y$ converges unconditionally in X and uniformly in $k \ge k_0$,
- 3. for any $k_0 \geq 1$, there exists $k \geq k_0$ such that $\sum_{i \in A_k} T^n S^i y \text{ unconditionally convergent, uniformly}$ in $n \in U_{l \geq 1} A_l$,
- 4. there exists $l_0 \geq 1$ such that $\sum_{i \in A_k} T^n S^i y$ unconditionally convergent, uniformly in $n \in U_{l \geq l_0} A_l$.

Then T is A-frequently hypercyclic.

2. SOT-*A*-Frequently Hypercyclic Operators

Let X be a separable infinite dimensional Banach space and let $\mathcal{L}(X)$ be the algebra of bounded linear operators on X. In general, the operator algebra $\mathcal{L}(X)$ is not separable under the operator norm topology.

Theorem 2.1.^[4] If X_0 is a dense subset of a separable infinite dimensional Banach space X, then there is a countable dense subset $\mathcal{L}_0(X_0)$ of $\mathcal{L}(X)$ in the strong operator topology consisting of finite rank operators whose range is contained in the span of X_0 . If X is a separable infinite dimensional Banach spee, then the algebra $\mathcal{L}(X)$ is separable in the strong operator topology.

The notions with respect to the strong operator topology will be denoted by using a prefix SOT. Thus, $\mathcal{L}(X)$ is SOT-separable and a dense subset in the strong operator topology is denoted by SOT-dense. Inspired by the definitions given in^[4], we introduce a notion of SOT- \mathcal{A} -frequent hypercyclicity.

Definition 2.2. Let \mathcal{A} be a non-trivial hereditarily upward family of subsets of \mathbb{Z}_+ . A bounded linear mapping $T: \mathcal{L}(X) \to \mathcal{L}(X)$ is said to be SOT- \mathcal{A} -frequently hypercyclic if there is an operator $B \in \mathcal{L}(X)$ such that for each non-empty SOT-open subset \mathcal{U} of $\mathcal{L}(X)$, the return set

$$N(B, \mathcal{U}) = \{n \in \mathbb{N} | \mathbf{T}^n(B) \in \mathcal{U}\}$$

is in A.

Analogous to the *A*-frequent hypercyclicity criterion, we define the corresponding criterion.

Definition 2.3. Let X be a separable Banach space and let \mathcal{A} be a hypercyclicity set. A linear map $T:\mathcal{L}(X) \to \mathcal{L}(X)$ satisfies the SOT- \mathcal{A} -frequent hypercyclicity criterion if there exist a countable SOT-dense subset \mathcal{L}_0 of $\mathcal{L}(X)$ and a map $S:\mathcal{L}_0 \to \mathcal{L}_0$, and disjoint sets $A_k \in \mathcal{A}$, $k \geq 1$, such that for each $B \in \mathcal{L}_0$,

- 1. TS = I, the identity on \mathcal{I}_0 ,
- 2. there exists $k_0 \geq 1$ such that $\sum_{n \in A_k} \mathbf{S}^n B$ converges unconditionally, uniformly in $k \geq k_0$,
- 3. for any $k_0 \ge 1$, there exists $k \ge k_0$ such that $\sum_{i \in A_k} \mathbf{T}^n \mathbf{S}^i B$ unconditionally convergent, uniformly in $n \in \bigcup_{l \ge 1} A_l$,
- 4. there exists $l_0 \ge 1$ such that $\sum_{i \in A_k} \mathbf{T}^n \mathbf{S}^i B$ unconditionally convergent, uniformly in $n \in \bigcup_{l \ge l_k} A_l$.

Theorem 2.4. Let X be a separable Banach space. If a linear map $T: \mathcal{L}(X) \to \mathcal{L}(X)$ satisfies the SOT- \mathcal{A} -frequent hypercyclicity criterion, then T is SOT- \mathcal{A} -frequently hypercyclic.

Theorem 2.5. Let T be an operator on a separable Banach space X. If T satisfies the \mathcal{A} -frequent hypercyclicity criterion, then the left multiplication operator L_T satisfies the SOT- \mathcal{A} -frequent hypercyclicity criterion.

Proof. Let X_0 be a dense subset of X and let $(y_l) \subset X_0$ be a dense sequence. Without loss of generality, we may assume that T satisfies the \mathscr{A} -frequent hypercyclicity criterion for $X_0 = \{y_l \mid l \geq 1\}$. Let $S \colon X_0 \to X_0$ be the map given in the \mathscr{A} -frequent hypercyclicity criterion. Let $\overline{X_0}$ be the linear span of X_0 and extending S by linearly to $\overline{X_0}$, we may assume that S is linear. Since X_0 is countable, by Theorem 2.1, there is a countable SOT-dense subset $\mathscr{L}_0(X_0)$ of $\mathscr{L}(X)$ consisting of finite rank operators whose range is contained in the span of X_0 . If $B \in \mathscr{L}_0(X_0)$, then since S is finite rank operator, S can be represented as

$$B\!(x)\!=\!\sum_{i=1}^{l} \lambda_{i}\!(x) y_{i} \,,\; x\!\in\! X\!\!,\; y_{i}\!\in\! X_{\!\!0}$$

where λ_i are bounded linear functional on X. Define $\Lambda_S: \mathcal{L}_0(X_0) \to \mathcal{L}_0(X_0)$ by $\Lambda_S(B) = SB$ for all $B \in \mathcal{L}_0(X_0)$. Since

$$\Lambda_{\mathcal{S}}(B)(x) = SB(x) = S\left(\sum_{i=1}^{l} \lambda_i(x)y_i\right) = \sum_{i=1}^{l} \lambda_i(x)Sy_i,$$

 $\Lambda_S(B)$ is a finite rank operator, and thus Λ_S is well-defined.

By condition 1 of the Theorem 1.5, we have, for all $B \in \mathcal{L}_0(X_0)$,

$$\Lambda_{S} \mathbf{L}_{T}(B) = \Lambda_{S}(TB) = STB.$$

Thus $\Lambda_S \mathbf{L}_T = I$ on $\mathcal{L}_0(X_0)$. For $B \in \mathcal{L}_0(X_0)$, it is enough to consider B is of the form $B(x) = \lambda(x)y$ with $y \in X_0$ and λ is a linear functional on X. Then

$$\begin{split} \sum_{n \in A_k} & A_S^n B(x) = \sum_{n \in A_k} S^n B(x) \\ &= \sum_{n \in A_k} S^n \lambda(x) y = \lambda(x) \sum_{n \in A_k} S^n y \end{split}$$

Since $\sum_{n\in A_k} S^n y$ converges unconditionally, uniformly in k, the condition 2 of the SOT- $\mathcal A$ -frequent hyper-

cyclicity criterion. Since $\sum \mathbf{I} \stackrel{n}{\sim} A^{i} R(x) = \sum \mathbf{I} \stackrel{n}{\sim} A^{i} \lambda(x) u$

$$\begin{split} \sum_{i \in A_k} \mathbf{L}_T^n & A_S^i B(x) {=} \sum_{i \in A_k} \mathbf{L}_T^n A_S^i \lambda(x) y \\ &= \lambda(x) \sum_{i \in A_k} T^n S^i y, \end{split}$$

condition 3 and 4 of SOT- \mathcal{A} -frequent hypercyclicity criterion follows from the conditions 3 and 4 of the Theorem 1.5. Thus the left multiplication operator \mathbf{L}_T satisfies the SOT- \mathcal{A} -frequent hypercyclicity criterion.

Theorem 2.6. Let T be an operator on a separable Banach space X. If $B \in \mathcal{L}(X)$ is an SOT- \mathcal{A} -frequently hypercyclic vector for the left multiplication operator \mathbf{L}_T and $x \in X$ is any non-zero vector, then Bx is a \mathcal{A} -frequently hypercyclic vector for T.

Proof. Recall that for any $V_0{\in}\mathcal{L}(X)$ and any $\epsilon>0$, an SOT-neighborhood of V_0 is of the form

$$\mathcal{U} = \{ V \in \mathcal{L}(X) \mid \| Vx - V_0 x \| < \epsilon \}.$$

Since $B{\in}\mathcal{L}(X)$ is an SOT- \mathcal{A} -frequently hypercyclic vector for \mathbf{L}_T , for any $V_0{\in}\mathcal{L}(X)$ and $\epsilon>0$, if $\|\mathbf{L}_T^nBx-V_0x\|<\epsilon$, then $n{\in}\mathcal{A}$. Let y be any vector in X. Then there is an operator V_0 on X such that $V_0x=y$. By definition of the left multiplication

operator, if $\| \mathbf{L}_T^n B x - V_0 x \| < \epsilon$, then

$$||T^nBx - V_0x|| = ||T^nBx - y|| < \epsilon.$$

This proves that the vector Bx is an \mathcal{A} -frequently hypercyclic vector for T.

An \mathcal{A} -frequently hypercyclic subspace for an operator T on X is an infinite-dimensional closed subspace of X all of whose non-zero vectors are \mathcal{A} -frequently hypercyclic vectors. Inspired by literature^[5], we have the following results.

Theorem 2.7. Let X be a separable infinite-dimensional Banach space, $T \subseteq \mathcal{L}(X)$ and \mathcal{A} a hypercyclicity set. Suppose that

- (1) T satisfies the \mathcal{A} -frequently hypercyclicity criterion
- (2) there exists an infinite-dimensional closed subspace $M_0 \subset X$ and a set $A \in \mathcal{A}$ such that $T^n x \to 0$ as $n \to \infty$, for all $x \in M_0$ and $n \in A$.

Then T has an \mathcal{A} -frequently hypercyclic subspace.

Proof. Suppose that T satisfies the Afrequently hypercyclicity criterion. Then by Theorem 2.4 and Theorem 2.5, the left multiplication operator \mathbf{L}_T is an SOT-Afrequently hypercyclic and let $B \in \mathcal{L}(X)$ be an SOT-Afrequently hypercyclic vector for \mathbf{L}_T . For any non-zero scalar α , $\alpha \mathbf{L}_T$ is also SOT-Afrequently hypercyclic. Thus, without loss of generality, we may assume that $\parallel B \parallel = \frac{1}{2}$. Since

$$||1+B|| \ge 1-||B|| \ge \frac{1}{2},$$

the subspace $M=(1+B)(M_0)$ is an infinite dimensional closed subspace of X. For any $y{\in}M$, y=x+Bx, for some $x{\in}M_0$, and $T^ny=T^nx+T^nBx$. By Theorem 2.6, for any non-zero vector $x{\in}M_0$, Bx is an $\mathcal A$ -frequently hypercyclic vector for T. Let x_0 be any vector in X. Then

$$\begin{array}{ll} \parallel T^ny-x_0\parallel \ = \ \parallel T^nBx+T^nx-x_0\parallel \\ & \leq \ \parallel T^nBx-x_0\parallel + \parallel T^nx\parallel \ . \end{array}$$

Since Bx is an \mathcal{A} -frequently hypercyclic for T, for any $\epsilon > 0$, $\parallel T^n Bx - x_0 \parallel < \frac{\epsilon}{2}$ for some $n \in A_k$ and by (2), for such n, $T^n x \to 0$ for any $x \in M_0$. Thus, for sufficiently large $n \in A_k$. $\parallel T^n y - x_0 \parallel < \epsilon$, for some $n \in A_k$. In other words, $y \in M$ is an \mathcal{A} -frequently hypercyclic vector for T.

Proposition 2.8.^[3] Let A be a hypercyclicity set and B_W be a weighted shift on $l^p(\mathbb{Z}_+)(1 \leq p < \infty)$. Then B_W is \mathcal{A} -frequently hypercyclic if and only if B_W holds the \mathcal{A} -frequent hypercyclicity criterion.

Theorem 2.9. Let B_W be a weighted shift on $X=l^p(\mathbb{Z}_+)$ and $\mathcal A$ a hypercyclicity set. For each $k\geq 0$, let

$$A(k) = \{n \ge 0 | \| B_W^n e_k \| \le C\}, C > 0.$$

Suppose that B_W is \mathcal{A} -frequently hypercyclic and there is a strictly increasing sequence $(k_j)_{j\geq 1}$ of nonnegative integers such that $\cap_{j\geq 1}A(k_j)$ \in \mathcal{A} , then B_W has an A-frequently hypercyclic subspace.

Proof. By Proposition 2.8, B_W is \mathcal{A} -frequently hypercyclic if and only if B_W holds the \mathcal{A} -frequent hypercyclicity criterion. Let $M_0 = \overline{span}\left\{e_{k_j}|j\geq 1\right\}$ and let $x{\in}M_0$. Then for $n{\in}\cap_{j\geq 1}A(k_j)$, we have

$$\begin{split} \parallel B_{W}^{n}x \parallel &= \parallel B_{W}^{n} \sum_{j=1}^{\infty} x_{k_{j}} e_{k_{j}} \parallel \\ &\leq \sum_{j=1}^{\infty} |x_{k_{j}}| \parallel B_{W}^{n} e_{k_{j}} \parallel &= \sum_{k_{j} \geq n} |x_{k_{j}}| \parallel B_{W}^{n} e_{k_{j}} \parallel \\ &\leq \sum_{k_{i} \geq 1} C \! |x_{k_{j}}| \to 0 \quad as \quad n \to \infty. \end{split}$$

Since $A = \bigcap_{j \ge 1} A(k_j) \in \mathcal{A}$, B_W has the \mathcal{A} -frequently hypercyclic subspace.

Acknowledgments

This work was supported by Seokyeong University Research Fund of 2017.

References

- M. Gupta and A. Mundayadan, "q-frequently hypercyclic operators", Banach Journal of Mathematical Analysis, Vol. 9, pp. 114-126, 2015.
- [2] F. Bayart and É. Matheron, "(Non-)weakly mixing operators and hypercyclicity sets", Annales de L'institut Fourier, Vol. 59, pp. 1-35, 2009.
- [3] J. Bés, Q. Menet, A. Peris, and Y. Puig, "Recurrence properties of hypercyclic operators", Mathematische Annalen, Vol. 366, pp. 545-572, 2016.
- [4] K. C. Chan and R. D. Taylor, "Hypercyclic subspaces of a banach space", Integral Equations and Operator Theory, Vol. 41, pp. 381-388, 2001.
- [5] Q. Menet, "Existence and non-existence of frequently hypercyclic subspaces for weighted shifts", Proc. Am. Math. Soc., Vol. 143, pp. 2469-2477, 2015.