DOI QR코드

DOI QR Code

Production of Concentrated Blueberry Vinegar Using Blueberry Juice and Its Antioxidant and Antimicrobial Activities

블루베리 농축식초 제조 및 이들의 항산화 및 항균 활성

  • Oh, Hyeonhwa (Department of Food Science and Technology, Chonbuk National University) ;
  • Jang, Sowon (Department of Food Science and Technology, Chonbuk National University) ;
  • Jun, Hyun-Il (Department of Food Science and Technology, Chonbuk National University) ;
  • Jeong, Do-Youn (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Kim, Young-Soo (Department of Food Science and Technology, Chonbuk National University) ;
  • Song, Geun-Seoup (Department of Food Science and Technology, Chonbuk National University)
  • Received : 2017.02.27
  • Accepted : 2017.05.25
  • Published : 2017.06.30

Abstract

This study was carried out to investigate the effects of seed vinegar on antioxidant activity and antimicrobial activities of concentrated blueberry vinegar (CBV). Of the nine strains of yeast and six strains of acetic acid bacteria provided by the Microbial Institute for Fermentation Industry, each strain of yeast (Saccharomyces cerevisiae SRCM 100610, showing the highest ethanol content) and acetic acid bacteria (Acetobacter pasteurianus SRCM 101342, showing the highest total acidity) was selected for production of CBVs. Sugar content, pH, total acidity, total phenolic content (TPC), and browning intensity (280 nm and 420 nm) in CBVs using concentrated blueberry juice were $11.05{\sim}12.70^{\circ}Brix$, 2.63~2.98, 1.65~5.72%, 3.03~4.24 mg/mL, 0.95~1.50, and 0.11~0.20, respectively. Sugar content and total acidity of CBVs increased upon addition of seed vinegar, whereas pH, TPC, and browning intensity decreased. Of all CBVs with various additions of seed vinegar, the control showed the lowest $EC_{50}$ values in DPPH radical scavenging assay, ABTS radical scavenging assay, and reducing power (23.80, 19.48, and 79.21 dilution factor, respectively), whereas the 40% seed vinegar group showed the highest clear zone diameter values for Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus (4.31, 4.59, 5.81, and 3.97, respectively). Antioxidant activities of CBVs were closely correlated with their TPC, browning intensity at 280 nm, pH, and total acidity values, showing correlation determination coefficient ($R^2$) values higher 0.82. However, antimicrobial activities of CBVs were closely correlated with their pH and total acidity values, showing higher $R^2$ values more than 0.92. These results suggest that CBVs using concentrated blueberry juice, S. cerevisiae SRCM 100610, and A. pasteurianus SRCM 101342 may be useful as potentially functional foods for enhancing health.

본 연구에서는 다양한 생리활성을 가졌다고 알려진 블루베리의 식품산업 이용률을 높이고자 블루베리 농축식초를 제조하였으며, 종초가 블루베리 농축식초의 이화학적 특성, 항산화 활성 및 항균 활성에 미치는 영향을 조사하였다. 선정된 주모용 효모(Saccharomyces cerevisiae SRCM 100610), 종초용 초산균(Acetobacter pasteurianus SRCM 101342) 및 블루베리 농축액을 활용하여 제조한 블루베리 농축식초의 당도, pH, 총산도, 총 페놀성 화합물, 갈변도(280 nm과 420 nm)는 각각 $11.05{\sim}12.70^{\circ}Brix$, 2.63~2.98, 1.65~5.72%, 3.03~4.24 mg/mL, 0.95~1.50 및 0.11~0.20이었으며, 종초 첨가량이 증가할수록 당도와 총산도는 증가하였으나 pH, 총 페놀성 화합물 및 갈변도는 감소하였다. 항산화 활성은 DPPH 라디칼 검정, ABTS 라디칼 검정 및 환원력에서는 control이 가장 낮은 $EC_{50}$ 값(23.80, 19.48 및 79.21배의 희석배율)을 보였으나 SOD 유사 활성에서는 종초 40% 첨가구가 가장 낮은 $EC_{50}$ 값(46.19배의 희석배율)을 나타내었다. 항균 활성은 종초 40% 첨가구의 clear zone diameter 값이 Escherichia coli KACC 10115에서는 4.31, Staphylococcus aureus KACC 1927에서는 4.59, Listeria monocytogenes KACC 10764에서는 5.81 및 Bacillus cereus KACC 10097에서는 3.97로 가장 높게 나타났다. 한편 항산화 활성은 총 페놀성 화합물 함량, 갈변도(at 280 nm), pH 및 총산도의 결정계수($R^2$) 값이 0.82~0.99를, 항균 활성에서는 pH와 총산도의 $R^2$ 값이 0.92~0.99 이상의 높은 값을 나타내어 강한 상관성을 보였다. 결과적으로 선정된 주모용 효모, 종초용 초산균 및 블루베리 농축액을 활용하여 제조한 블루베리 농축식초는 건강 기능성 식품으로의 가능성이 있다고 판단된다.

Keywords

References

  1. Kim TC, Bae KS, Kim IK, Chun HJ. 2005. Antioxidative activities of solvent extracts from blueberry. Korean J Oriental Physiol Pathol 19: 179-183.
  2. Lee HR, Jung BR, Park JY, Hwang IW, Kim SK, Choi JU, Lee SH, Chung SK. 2008. Antioxidant activity and total phenolic contents of grape juice products in the Korean market. Korean J Food Preserv 15: 445-449.
  3. Lee JG, Lee BY. 2007. Effect of media composition on growth and rooting of highbush blueberry cuttings. Kor J Hort Sci Technol 25: 355-359.
  4. Moon HK, Lee SW, Kim JK. 2013. Physicochemical and quality characteristics of the Korean and American blueberries. Korean J Food Preserv 20: 524-531. https://doi.org/10.11002/kjfp.2013.20.4.524
  5. Basu A, Rhone M, Lyons TJ. 2010. Berries: emerging impact on cardiovascular health. Nutr Rev 68: 168-177. https://doi.org/10.1111/j.1753-4887.2010.00273.x
  6. Naczk M, Shahidi F. 2006. Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J Pharm Biomed Anal 41: 1523-1542. https://doi.org/10.1016/j.jpba.2006.04.002
  7. Kalt W, Ryan DA, Duy JC, Prior RL, Ehlenfeldt MK, Vander Kloet SP. 2001. Interspecific variation in anthocyanins, phenolics, and antioxidant capacity among genotypes of highbush and lowbush blueberries (Vaccinium section cyanococcus spp.). J Agric Food Chem 49: 4761-4767. https://doi.org/10.1021/jf010653e
  8. KMFDS. 2016. Analysis report for annual production of functional food in 2016. Korean Ministry of Food and Drug Safety, Seoul, Korea. p 1-12.
  9. Son CG. 2014. Progress of functional food market in Korea and strategy of Korean medicine. J Korean Med 35: 68-74. https://doi.org/10.13048/jkm.14007
  10. Jun HI, Park SY, Jeong DY, Song GS, Kim YS. 2014. Quality properties of yogurt added with hot water concentrates from Allium hookeri root. J Korean Soc Food Sci Nutr 43: 1415-1422. https://doi.org/10.3746/jkfn.2014.43.9.1415
  11. Jang JY, Lee J, Choi EJ, Choi HJ, Oh YJ, Lee SH, Kim HJ. 2015. Effect of starter cultures on the antioxidant activities of Allium hookeri root-hot water extract. Korean J Food Cook Sci 31: 98-102. https://doi.org/10.9724/kfcs.2015.31.1.098
  12. Mo HW, Jung YH, Jeong JS, Choi KH, Choi SW, Park CS, Choi MA, Kim ML, Kim MS. 2013. Quality characteristics of vinegar fermented using Omija. J Korean Soc Food Sci Nutr 42: 441-449. https://doi.org/10.3746/jkfn.2013.42.3.441
  13. Masino F, Chinnici F, Bendini A, Montevecchi G, Antonelli A. 2008. A study on relationships among chemical, physical, and qualitative assessment in traditional balsamic vinegar. Food Chem 106: 90-95. https://doi.org/10.1016/j.foodchem.2007.05.069
  14. AOAC. 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA. p 1121-1180.
  15. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356. https://doi.org/10.1021/ac60111a017
  16. ISO 14502-1. 2005. Determination of substances characteristic of green and black tea-Part 1: Content of total polyphenols in tea-Colorimetric method using Folin-Ciocalteu reagent. International Organization for Standardization, Geneva, Switzerland.
  17. Kano M, Takayanagi T, Harada K, Makino K, Ishikawa F. 2005. Antioxidative activity of anthocyanins from purple sweet potato, Ipomoera batatas cultivar Ayamurasaki. Biosci Biotechnol Biochem 69: 979-988. https://doi.org/10.1271/bbb.69.979
  18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  19. Li X. 2012. Improved pyrogallol autoxidation method: a reliable and cheap superoxide-scavenging assay suitable for all antioxidants. J Agric Food Chem 60: 6418-6424. https://doi.org/10.1021/jf204970r
  20. Oyaizu M. 1986. Studies on products of browning reaction-antioxidant activities of products of browning reaction prepared from glucosamine. Jap J Nutr 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  21. Sohn HY, Ryu HY, Jang Y, Jang HS, Park YM, Kim SY. 2008. Evaluation of antimicrobial, antithrombin, and antioxidant activity of aerial part of Saxifraga stolonifera. Kor J Microbiol Biotechnol 36: 195-200.
  22. Yoon HH, Chae KS, Son RH, Jung JH. 2015. Antioxidant activity and fermentation characteristics of blueberry wine using traditional yeast. J Korean Soc Food Sci Nutr 44: 840-846. https://doi.org/10.3746/jkfn.2015.44.6.840
  23. Mo HW, Jeong JS, Choi SW, Choi KH. 2012. Preparation of wine using wild yeast from dried Omija and optimal nutritional requirements for alcoholic fermentation. J Korean Soc Food Sci Nutr 41: 254-260. https://doi.org/10.3746/jkfn.2012.41.2.254
  24. Korea Foods Industry Association. 2002. Food Code. Seoul, Korea. p 32.
  25. Lee GS, Nam KY, Choi JE. 2013. Ginsenoside composition and quality characteristics of red ginseng extracts prepared with different extracting methods. Korean J Med Crop Sci 21: 276-281. https://doi.org/10.7783/KJMCS.2013.21.4.276
  26. Lertittikul W, Benjakul S, Tanaka M. 2007. Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein-glucose model system as influenced by pH. Food Chem 100: 669-677. https://doi.org/10.1016/j.foodchem.2005.09.085
  27. Jacobo-Velázquez DA, Cisneros-Zevallos L. 2009. Correlations of antioxidant activity against phenolic content revisited: a new approach in data analysis for food and medicinal plants. J Food Sci 74: R107-R113. https://doi.org/10.1111/j.1750-3841.2009.01352.x
  28. Lee MJ, Kim HD, Park JW, Kim DS. 1992. Comparison of the antioxidant activity of melanoidin with commercial antioxidants and their synergistic effects. J Korean Soc Food Nutr 21: 686-692.
  29. Woo SM, Jang SY, Kim OM, Youn KS, Jeong YJ. 2004. Antimicrobial effects of vinegar on the harmful food-born organisms. Korean J Food Preserv 11: 117-121.
  30. Choi H, Gwak G, Choi D, Park J, Cheong H. 2015. Antimicrobial efficacy of fermented dark vinegar from unpolished rice. Microbiol Biotechnol Lett 43: 97-104. https://doi.org/10.4014/mbl.1504.04005
  31. Jun HI, Jang HN, Yang JH, Song GS, Kim YS. 2015. Physicochemical properties and antioxidant activities of steamdried Allium hookeri root. J Korean Soc Food Sci Nutr 44: 412-417. https://doi.org/10.3746/jkfn.2015.44.3.412
  32. Jun HI, Kim YA, Kim YS. 2014. Antioxidant activities of Rubus coreanus Miquel and Morus alba L. fruits. J Korean Soc Food Sci Nutr 43: 381-388. https://doi.org/10.3746/jkfn.2014.43.3.381

Cited by

  1. 복분자 착즙박을 이용한 식초의 이화학적 특성 및 항산화 활성 vol.53, pp.1, 2017, https://doi.org/10.9721/kjfst.2021.53.1.104