DOI QR코드

DOI QR Code

Characterization of Anti-Advanced Glycation End Products (AGEs) and Radical Scavenging Constituents from Ainsliaea acerifolia

단풍취의 최종당화산물 생성 저해 및 라디칼 소거 물질의 동정

  • Jeong, Gyeng Han (Department of Food Science and Biotechnology, Daegu University) ;
  • Kim, Tae Hoon (Department of Food Science and Biotechnology, Daegu University)
  • 정경한 (대구대학교 식품공학과) ;
  • 김태훈 (대구대학교 식품공학과)
  • Received : 2017.03.09
  • Accepted : 2017.04.25
  • Published : 2017.06.30

Abstract

Reactive oxygen species (ROS) and advanced glycation end products (AGEs) are valuable therapeutic targets for the regulation of diabetic complications. Activity-guided isolation of the ethylacetate (EtOAc)-soluble portion of 70% ethanolic extract from aerial parts of Ainsliaea acerifolia was performed, followed by AGE formation inhibition assay for the characterization of four dicaffeoylquinic acid derivatives of a previously known structure, methyl 3,5-di-O-caffeoyl-epi-quinate (1), 3,5-di-O-caffeoyl-epi-quinic acid (2), 4,5-di-O-caffeoyl-quinic acid (3), and methyl 4,5-di-O-caffeoyl-quinate (4). The structures of these compounds were confirmed by interpretation of nuclear magnetic resonance (NMR, $^1H-$, $^{13}C-NMR$, two-dimensional NMR) and mass spectroscopic data. Among the isolates, the major secondary metabolites, 3,5-di-O-caffeoyl-epi-quinic acid (2) and 4,5-di-O-caffeoyl-quinic acid (3) showed the most potent inhibitory effects against AGE formation with $IC_{50}$ values of $0.6{\pm}0.1{\mu}M$ and $0.4{\pm}0.1{\mu}M$, respectively. Furthermore, all isolated dicaffeoylquinic acid derivatives were evaluated for their radical scavenging activities using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical, and compound 3 exhibited the most potent inhibitory effect in a concentration-dependent manner. This result suggests that the caffeoylquinic acid dimers isolated from A. acerifolia might be beneficial for the prevention of diabetic complications and related diseases.

당뇨합병증에 효과적인 천연물 유래의 신소재를 개발하기 위하여 본 연구를 수행하여 단풍취 70% 에탄올 추출물의 EtOAc 가용부로부터 최종당화산물 생성 억제능($IC_{50}=5.5{\pm}1.1{\mu}g/mL$)을 확인하였다. 활성을 나타내는 성분의 동정을 위하여 $C_{18}$겔 등을 활용한 칼럼크로마토그래피를 수행하여 4종의 dicaffeoylquinic acid 유도체 화합물을 분리하였고, 각 화합물의 화학구조는 NMR 스펙트럼 데이터 해석 및 표품과의 HPLC 직접 비교를 통하여 methyl 3,5-di-O-caffeoyl-epi-quinate(1), 3,5-di-O-caffeoyl-epi-quinic acid(2), 4,5-di-O-caffeoyl-quinic acid(3) 및 methyl 4,5-di-O-caffeoyl-quinate(4)로 동정하였다. 이들 화합물에 대해 최종당화산물 생성 억제능을 평가한 결과 4,5-di-O-caffeoyl-quinic acid(3)가 가장 강한 $0.4{\pm}0.1{\mu}M$$IC_{50}$ 값을 나타내었으며, 3,5-di-O-caffeoyl-epi-quinic acid(2)가 $0.6{\pm}0.1{\mu}M$$IC_{50}$ 값을 나타내었다. 또한, 이들 물질에 대해 $ABTS^+$ 소거 활성을 평가하여 4,5-di-O-caffeoyl-quinic acid(3)가 가장 강한 라디칼 소거 활성인 $14.6{\pm}0.4{\mu}M$$IC_{50}$ 값을 나타내었으며, 구조 이성질체인 3,5-di-O-caffeoyl-epi-quinic acid(2)가 $18.8{\pm}0.4{\mu}M$$IC_{50}$ 값을 확인하였다. 단풍취에서 분리한 화합물의 활성은 caffeic acid의 결합방식 및 methyl화 여부에 따른 화합물의 구조에 따라 다름이 시사되었다. 향후 우수한 활성을 나타낸 이들 화합물의 in vivo 실험을 통한 활성기작의 검증이 필요하다고 생각된다. 또한, 추가적인 연구를 통하여 식의약 소재로 활용이 가능한 새로운 천연신소재 발굴을 위한 기초자료제공 및 당뇨합병증에 효과적인 천연 물질의 상업화를 위한 귀중한 자료로 활용할 수 있으리라 판단된다.

Keywords

References

  1. Brownlee M. 2005. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 54: 1615-1625. https://doi.org/10.2337/diabetes.54.6.1615
  2. Ahmed N. 2005. Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res Clin Pract 67: 3-21. https://doi.org/10.1016/j.diabres.2004.09.004
  3. Huebschmann AG, Regensteiner JG, Vlassara H, Reusch JE. 2006. Diabetes and advanced glycoxidation end products. Diabetes Care 29: 1420-1432. https://doi.org/10.2337/dc05-2096
  4. Peyroux J, Sternberg M. 2006. Advanced glycation endproducts (AGEs): Pharmacological inhibition in diabetes. Pathol Biol 54: 405-419. https://doi.org/10.1016/j.patbio.2006.07.006
  5. Matsuda H, Wang T, Managi H, Yoshikawa M. 2003. Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorg Med Chem 11: 5317-5323. https://doi.org/10.1016/j.bmc.2003.09.045
  6. Edelstein D, Brownlee M. 1992. Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes 41: 26-29.
  7. Ceriello A. 2003. New insights on oxidative stress and diabetic complications may lead to a "casual" antioxidant therapy. Diabetes Care 26: 1589-1596. https://doi.org/10.2337/diacare.26.5.1589
  8. Stitt A, Gardiner TA, Anderson NL, Canning P, Frizzell N, Duffy N, Boyle C, Januszewski AS, Chachich M, Baynes JW, Thorpe SR. 2002. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 51: 2826-2832. https://doi.org/10.2337/diabetes.51.9.2826
  9. Doggrell SA. 2001. ALT-711 decreases cardiovascular stiffness and has potential in diabetes, hypertension and heart failure. Expert Opin Invest Drugs 10: 981-983. https://doi.org/10.1517/13543784.10.5.981
  10. Yokozawa T, Nakagawa T, Terasawa K. 2001. Effects of Oriental medicines on the production of advanced glycation endproducts. J Tradit Med 18: 107-112.
  11. Rahbar S, Figarola JL. 2003. Novel inhibitors of advanced glycation endproducts. Arch Biochem Biophys 419: 63-79. https://doi.org/10.1016/j.abb.2003.08.009
  12. Sugimoto S, Wanas AS, Mizuta T, Matsunami K, Kamel MS, Otsuka H. 2014. Structure elucidation of secondary metabolites isolated from the leaves of Ixora undulate and their inhibitory activity toward advanced glycation end-products formation. Phytochemistry 108: 189-195. https://doi.org/10.1016/j.phytochem.2014.10.008
  13. de Bernonville TD, Guyot S, Paulin JP, Gaucher M, Loufrani L, Henrion D, Derbre S, Guilet D, Richomme P, Dat JF, Brisset MN. 2010. Dihydrochalcones: Implication in resistance to oxidative stress and bioactivities against advanced glycation end-products and vasoconstriction. Phytochemistry 71: 443-452. https://doi.org/10.1016/j.phytochem.2009.11.004
  14. Islam MN, Ishita IJ, Jung HA, Choi JS. 2014. Vicenin 2 isolated from Artemisia capillaris exhibited potent anti-glycation properties. Food Chem Toxicol 69: 55-62. https://doi.org/10.1016/j.fct.2014.03.042
  15. Choi SZ, Yang MC, Choi SU, Lee KR. 2006. Cytotoxic terpenes and lignans from the roots of Ainsliaea acerifolia. Arch Pharm Res 29: 203-208. https://doi.org/10.1007/BF02969394
  16. Kim T, Jo C, Kim HS, Park YM, Wu YX, Cho JH, Kim TH. 2016. Chemical constituents from Ainsliaea acerifolia as potential anti-obesity agents. Phytochem Lett 16: 146-151. https://doi.org/10.1016/j.phytol.2016.04.005
  17. Vinson JA, Howard III TB. 1996. Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. J Nutr Biochem 7: 659-663. https://doi.org/10.1016/S0955-2863(96)00128-3
  18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  19. Sato T, Iwaki M, Shimogaito N, Wu X, Yamagishi S, Takeuchi M. 2006. TAGE (toxic AGEs) theory in diabetic complications. Curr Mol Med 6: 351-358. https://doi.org/10.2174/156652406776894536
  20. Kim HJ, Lee YS. 2005. Identification of new dicaffeoylquinic acids from Chrysanthemum morifolium and their antioxidant activities. Planta Med 71: 871-876. https://doi.org/10.1055/s-2005-873115
  21. Tatefuji T, Izumi N, Ohta T, Arai S, Ikeda M, Kurimoto M. 1996. Isolation and identification of compounds from Brazilian propolis which enhance macrophage spreading and mobility. Biol Pharm Bull 19: 966-970. https://doi.org/10.1248/bpb.19.966
  22. Basnet P, Matsushige K, Hase K, Kadota S, Namba T. 1996. Four di-O-caffeoyl quinic acid derivatives from propolis. Potent hepatoprotective activity in experimental liver injury models. Biol Pharm Bull 19: 1479-1484. https://doi.org/10.1248/bpb.19.1479
  23. Morel S, Helesbeux JJ, Séraphin D, Derbre S, Gatto J, Aumond MC, Abatuci Y, Grellier P, Beniddir MA, Pape PL, Pagniez F, Litaudon M, Landreau A, Richomme P. 2013. Anti-AGEs and antiparasitic activity of an original prenylated isoflavonoid and flavanones isolated from Derris ferruginea. Phytochem Lett 6: 498-503. https://doi.org/10.1016/j.phytol.2013.06.002
  24. Ferchichi L, Derbre S, Mahmood K, Toure K, Guilet D, Litaudon M, Awang K, Hadi AHA, Le Ray AM, Richomme P. 2012. Bioguided fractionation and isolation of natural inhibitors of advanced glycation end-products (AGEs) from Calophyllum flavoramulum. Phytochemistry 78: 98-106. https://doi.org/10.1016/j.phytochem.2012.02.006
  25. Halliwell B. 1991. Drug antioxidant effects. Drugs 42: 569-605. https://doi.org/10.2165/00003495-199142040-00003
  26. Rice-Evans CA, Miller NJ, Paganga G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20: 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  27. Lin KW, Wang BW, Wu CM, Yen MH, Wei BL, Hung CF, Lin CN. 2015. Antioxidant prenylated phenols of Artocarpus plants attenuate ultraviolet radiation-induced damage on human keratinocytes and fibroblasts. Phytochem Lett 14: 190-197. https://doi.org/10.1016/j.phytol.2015.10.013
  28. Ponomarenko J, Trouillas P, Martin N, Dizhbite T, Krasilnikova J, Telysheva G. 2014. Elucidation of antioxidant properties of wood bark derived saturated diarylheptanoids: A comprehensive (DFT-supported) understanding. Phytochemistry 103: 178-187. https://doi.org/10.1016/j.phytochem.2014.03.010