Two new species of genus *Luffariella* (Dictyoceratida: Thorectidae) from Korea

Chung Ja Sim¹,*, Kyung Jin Lee² and Young A Kim³

¹Department of Biological Sciences, Hannam University, Daejeon 34430, Republic of Korea
²Strategic Planning Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
³Korea Institute of Ocean Science & Technology, Ansan 15627, Republic of Korea

*Correspondent: cjsim@hnu.kr

Two new species of the genus *Luffariella* (Dictyoceratida: Thorectidae), *L. tubula* n. sp. and *L. koreana* n. sp. were collected from Jeju-do, Korea. These species differ significantly from the previously reported five species in terms of shape and skeletal structure. *L. tubula* n. sp. has two categories in thickness of secondary fibres which were different from other species. *L. koreana* n. sp. is very similar to *L. variabilis* from Tahiti in skeletal structure, but differs in sponge shape with irregular branching and indistinct surface conules. Primary fibres of the two new species are separated from secondary and tertiary fibres.

Keywords: *Luffariella*, Thorectidae, Dictyoceratida, new species, Korea

© 2017 National Institute of Biological Resources
DOI:10.12651/JSR.2017.6.2.190

INTRODUCTION

The genus *Luffariella* in the Family Thorectidae was erected by Thiele (1899). To date, they poorly known, with only five species reported worldwide. The five species are as follows: *Luffariella variabilis* (Polejaeff, 1884) from Tahiti, *L. geometrica* Kirkpatrick 1900 from Funafuti, *L. herdmani* (Dendy, 1905) from Ceylon seas, *L. caliculata* Bergquist, 1995 and *L. cylindrica* Bergquist, 1995 from New Caledonia. This genus was characterized by simple skeletal structure (Lendenfeld, 1889; Bergquist, 1980; 1995; Hooper and Van Soest, 2002). In this present study, we reported two new *Luffariella* species and the first record of this genus in Korea. These new species are described and illustrations are provided.

SYSTEMATIC ACCOUNTS

Phylum Porifera Grant, 1836

Class Demospongiae Sollas, 1885

Order Dictyoceratida Minchin, 1900

Family Thorectidae, Bergquist, 1978

Subfamily Thorectinae, Bergquist, 1978

Genus Luffariella Thiele, 1899

Luffariella tubula n. sp. (Fig. 1)

Type specimen. Holotype (NIBRIV0000305501), Munseom, Seogwipo-si, Jeju-do, 3 Sep 2012, Eom TY, by SCUBA, depth 10 m, deposited in the NIBR.

Description. Irregular small mass with tube-like branch repent form, size up to 6.5 × 4 cm. Surface covered with thin membrane, conules indistinct. Thin walled tube, 1-2 mm thick. Several vent holes, 2-5 mm in diameter, open at end of tube. Color in life yellowish beige. Texture very hard and incompressible. Sponge have a large quantity of collagen with fibres network.

Skelelon: The skeleton consists of reticulation of thin-walled. Meshed network of thick primary fibres, separated from secondary and tertiary fibres (Fig. 1C).

MATERIALS AND METHODS

Sponges were collected from a depth of 10 m using SCUBA on Sep. 2012 from Jejudo Island, Korea. All specimens were fixed in 95%. The external features of sponges was observed with a stereo microscope (Stemi DV4, Carl Zeiss, Göttingen, Germany). The skeletal fibres were studied under a light microscope (Primo Star, Carl Zeiss, Göttingen, Germany). The type specimens were deposited in the National Institute of Biological Resources (NIBR), Incheon, Korea.
Fig. 1. *Luffariella tubula* n. sp. A, entire animal; B, closed surface; C, primary fibres separate from secondary and tertiary fibres; D, cored primary fibres near surface; E, F, choanosome skeletal structure. G, skeletal structure with collagen; H, thick branched primary fibres with secondary and tertiary fibres. Scale bars: A = 2 cm, B = 1 cm, C, D = 200 μm, E-H = 100 μm.
Primary fibres usually uncored from debris, but cored fibres appeared near surface membrane rarely. Primary fibres usually irregular shape and variable in diameter, but cored fibres, 150 μm in diameter, near surface. Uncored primary fibres, 80-200 μm in diameter, at choanosome (Fig. 1H). Two sizes of regular secondary fibres, 60-100 μm and 40-60 μm in diameter. Tertiary fibres, 10-15 μm in diameter (Fig. 1C).

Etymology. This species is named after its tube-like shape.

Remarks. This new species is very similar to the genus *Hyattella* in the skeletal structure of secondary fibres, but differs in lacking cored primary fibres. Thickly branched primary and tertiary fibres appeared in choanosome.

Luffariella koreana n. sp. (Figs. 2, 3)

Type specimen. Holotype (NIBRIV0000305502), Munseom, Seogwipo-si, Jeju-do, 5 Sep 2012, Eom TY, by scuba, depth 10 m, deposited in the NIBR.

Description. Irregular mass with three tube-like branch on sponge side. Size up to 12×4.5 cm and branches, 1-2 cm in diameter. Surface covered with thin membrane. Surface conules indistinct. Several vents open over...
Fig. 3. *Luffariella koreana* n. sp. A, surface membrane with secondary fibres; B, closed primary fibres; C, tertiary fibres; D, thin secondary fibres; E, base skeletal structure; F, cored primary fibres. Scale bars: A-F = 100 μm.

Table 1. Comparison of New species of Genus *Luffariella*

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth form</th>
<th>Primary fibres (μm)</th>
<th>Secondary fibres (μm)</th>
<th>Tertiary fibres (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. caliculata</td>
<td>Cup-shaped</td>
<td>120-150 (no cored)</td>
<td>10-50</td>
<td>2-5</td>
</tr>
<tr>
<td>L. cylindrical</td>
<td>Erect cylindrical</td>
<td>60-80 (lightly cored)</td>
<td>20-30</td>
<td>4-7</td>
</tr>
<tr>
<td>L. geometrica</td>
<td>Cushion-shaped</td>
<td>175-210</td>
<td>110</td>
<td>16</td>
</tr>
<tr>
<td>L. variabilis</td>
<td>Massive, upright</td>
<td>200</td>
<td>67</td>
<td>10</td>
</tr>
<tr>
<td>L. herdmanni</td>
<td>Flattened crust with digitiform processes</td>
<td>80 (cored many spicules)</td>
<td>80</td>
<td>16</td>
</tr>
<tr>
<td>L. tubula n. sp.</td>
<td>Mass with tube branch</td>
<td>150 (lightly cored)</td>
<td>40-60</td>
<td>10-15</td>
</tr>
<tr>
<td>L. koreana n. sp.</td>
<td>Mass with tube branch</td>
<td>80-150 (no cored)</td>
<td>20-70</td>
<td>8-10</td>
</tr>
</tbody>
</table>

Skeleton: Thin walled tube-like branches consist of dense fibres network with strong collagen. Primary fibres usually uncored, but small part of fibres lightly cored at surface. Near surface, primary fibres arrayed in groups of two or three fibres and connected by secondary fibres in a ladder-like (Fig. 3B). Primary fibres at surface, 80-350 μm in diameter and 350 μm in diameter at choanosome, irregularly arranged at base of sponge. Secondary fibres, 20-70 μm in diameter. Large meshed regular net-work, 250-600 μm wide, appeared near surface membrane (Fig. 3A). Primary and secondary fibres network separated from each other. Tertiary fibres, 8-10 μm in diameter, branched out from secondary fibres at choanosome (Fig. 3C).

Etymology. This species is named after the type locality, Korea.

Remarks. This new species is very similar to Luffariella cylindrica Bergquist 1995 and L. variabilis Polajeff 1884, partly in its arrangement of skeletal structure, but differs in sponge growth form. Growth form of this new species branches out laterally like repent form, but L. cylindrica and L. variabilis are erect form.

Discussion

Two new Luffariella species from Jejudo Island, Korea are mass in growth form with lacunae and tube-like branches. The thin walled tubes are very hard and firm because the skeletal fibres are mixed with large amounts of collagen.

Most of the surface has thin membrane with regular meshed secondary fibres. The small and large secondary fibres' mesh net and fine tertiary fibres are separated from thick branched primary fibres (Fig. 1C, Fig. 2F). Cored primary fibres appeared near surface rarely, similar to the genus Hyattella's Figures have major differences from choanosomal uncored primary fibres. Tertiary fibres are uncommon.

Acknowledgements

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR No. 2013-02-058). We thank Dr. K. Ruetzler, research biologist and curator, Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, for his advice, and help comparing Hyattella and Hippospongia specimens at the Smithsonian Institution’s Museum Support Center (MSC).

References

Submitted: December 5, 2016
Revised: March 6, 2017
Accepted: June 14, 2017