DOI QR코드

DOI QR Code

Cancer stem cell surface markers on normal stem cells

  • Kim, Won-Tae (Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University) ;
  • Ryu, Chun Jeih (Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University)
  • Received : 2017.03.07
  • Published : 2017.06.30

Abstract

The cancer stem cell (CSC) hypothesis has captured the attention of many scientists. It is believed that elimination of CSCs could possibly eradicate the whole cancer. CSC surface markers provide molecular targeted therapies for various cancers, using therapeutic antibodies specific for the CSC surface markers. Various CSC surface markers have been identified and published. Interestingly, most of the markers used to identify CSCs are derived from surface markers present on human embryonic stem cells (hESCs) or adult stem cells. In this review, we classify the currently known 40 CSC surface markers into 3 different categories, in terms of their expression in hESCs, adult stem cells, and normal tissue cells. Approximately 73% of current CSC surface markers appear to be present on embryonic or adult stem cells, and they are rarely expressed on normal tissue cells. The remaining CSC surface markers are considerably expressed even in normal tissue cells, and some of them have been extensively validated as CSC surface markers by various research groups. We discuss the significance of the categorized CSC surface markers, and provide insight into why surface markers on hESCs are an attractive source to find novel surface markers on CSCs.

Keywords

References

  1. Visvader JE and Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8, 755-768 https://doi.org/10.1038/nrc2499
  2. Tirino V, Desiderio V, Paino F et al (2013) Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J 27, 13-24 https://doi.org/10.1096/fj.12-218222
  3. Bonnet D and Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3, 730-737 https://doi.org/10.1038/nm0797-730
  4. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100, 3983-3988 https://doi.org/10.1073/pnas.0530291100
  5. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432, 396-401 https://doi.org/10.1038/nature03128
  6. Collins AT, Berry PA, Hyde C, Stower MJ and Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65, 10946-10951 https://doi.org/10.1158/0008-5472.CAN-05-2018
  7. Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67, 1030-1037 https://doi.org/10.1158/0008-5472.CAN-06-2030
  8. O'Brien CA, Pollett A, Gallinger S and Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106-110 https://doi.org/10.1038/nature05372
  9. Zhang WC, Shyh-Chang N, Yang H et al (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148, 259-272 https://doi.org/10.1016/j.cell.2011.11.050
  10. Takaishi S, Okumura T, Tu S et al (2009) Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27, 1006-1020 https://doi.org/10.1002/stem.30
  11. Curley MD, Therrien VA, Cummings CL et al (2009) CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 27, 2875-2883
  12. Terris B, Cavard C and Perret C (2010) EpCAM, a new marker for cancer stem cells in hepatocellular carcinoma. J Hepatol 52, 280-281 https://doi.org/10.1016/j.jhep.2009.10.026
  13. Boiko AD, Razorenova OV, van de Rijn M et al (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466, 133-137 https://doi.org/10.1038/nature09161
  14. Bach P, Abel T, Hoffmann C et al (2013) Specific elimination of CD133+ tumor cells with targeted oncolytic measles virus. Cancer Res 73, 865-874 https://doi.org/10.1158/0008-5472.CAN-12-2221
  15. Kaiser J (2015) The cancer stem cell gamble. Science 347, 226-229 https://doi.org/10.1126/science.347.6219.226
  16. Waldron NN, Barsky SH, Dougherty PR and Vallera DA (2014) A bispecific EpCAM/CD133-targeted toxin is effective against carcinoma. Target Oncol 9, 239-249 https://doi.org/10.1007/s11523-013-0290-9
  17. Schmohl JU and Vallera DA (2016) CD133, Selectively Targeting the Root of Cancer. Toxins (Basel) 8, 165 https://doi.org/10.3390/toxins8060165
  18. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC and Dirks PB (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8, 806-823 https://doi.org/10.1038/nrd2137
  19. Xia P (2014) Surface markers of cancer stem cells in solid tumors. Curr Stem Cell Res Ther 9, 102-111 https://doi.org/10.2174/1574888X09666131217003709
  20. Islam F, Gopalan V, Smith RA and Lam AK (2015) Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment. Exp Cell Res 335, 135-147 https://doi.org/10.1016/j.yexcr.2015.04.018
  21. Zhao W, Ji X, Zhang F, Li L and Ma L (2012) Embryonic stem cell markers. Molecules 17, 6196-6236 https://doi.org/10.3390/molecules17066196
  22. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147 https://doi.org/10.1126/science.282.5391.1145
  23. Kuroda Y, Kitada M, Wakao S et al (2010) Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci U S A 107, 8639-8643 https://doi.org/10.1073/pnas.0911647107
  24. Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW and Perlingeiro RC (2007) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109, 1743-1751 https://doi.org/10.1182/blood-2005-11-010504
  25. Sandstedt J, Jonsson M, Vukusic K et al (2014) SSEA-4+ CD34- cells in the adult human heart show the molecular characteristics of a novel cardiomyocyte progenitor population. Cells Tissues Organs 199, 103-116 https://doi.org/10.1159/000363225
  26. Chang WW, Lee CH, Lee P et al (2008) Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc Natl Acad Sci U S A 105, 11667-11672 https://doi.org/10.1073/pnas.0804979105
  27. Schopperle WM and DeWolf WC (2007) The TRA-1-60 and TRA-1-81 human pluripotent stem cell markers are expressed on podocalyxin in embryonal carcinoma. Stem Cells 25, 723-730
  28. Corominas-Faja B, Cufi S, Oliveras-Ferraros C et al (2013) Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway. Cell Cycle 12, 3109-3124 https://doi.org/10.4161/cc.26173
  29. Rajasekhar VK, Studer L, Gerald W, Socci ND and Scher HI (2011) Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappaB signalling. Nat Commun 2, 162 https://doi.org/10.1038/ncomms1159
  30. Mao XG, Zhang X, Xue XY et al (2009) Brain Tumor Stem-Like Cells Identified by Neural Stem Cell Marker CD15. Transl Oncol 2, 247-257 https://doi.org/10.1593/tlo.09136
  31. Liebert M, Jaffe R, Taylor RJ, Ballou BT, Solter D and Hakala TR (1987) Detection of SSEA-1 on human renal tumors. Cancer 59, 1404-1408 https://doi.org/10.1002/1097-0142(19870415)59:8<1404::AID-CNCR2820590804>3.0.CO;2-D
  32. Miyake M, Zenita K, Tanaka O, Okada Y and Kannagi R (1988) Stage-specific expression of SSEA-1-related antigens in the developing lung of human embryos and its relation to the distribution of these antigens in lung cancers. Cancer Res 48, 7150-7158
  33. Grosse-Gehling P, Fargeas CA, Dittfeld C et al (2013) CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol 229, 355-378 https://doi.org/10.1002/path.4086
  34. Irollo E and Pirozzi G (2013) CD133: to be or not to be, is this the real question? Am J Transl Res 5, 563-581
  35. Yin AH, Miraglia S, Zanjani ED et al (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90, 5002-5012
  36. Sundberg M, Jansson L, Ketolainen J et al (2009) CD marker expression profiles of human embryonic stem cells and their neural derivatives, determined using flow-cytometric analysis, reveal a novel CD marker for exclusion of pluripotent stem cells. Stem Cell Res 2, 113-124 https://doi.org/10.1016/j.scr.2008.08.001
  37. Uchida N, Buck DW, He D et al (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97, 14720-14725 https://doi.org/10.1073/pnas.97.26.14720
  38. Kemper K, Sprick MR, de Bree M et al (2010) The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res 70, 719-729 https://doi.org/10.1158/0008-5472.CAN-09-1820
  39. Dennis JE, Esterly K, Awadallah A, Parrish CR, Poynter GM and Goltry KL (2007) Clinical-scale expansion of a mixed population of bone-marrow-derived stem and progenitor cells for potential use in bone-tissue regeneration. Stem Cells 25, 2575-2582 https://doi.org/10.1634/stemcells.2007-0204
  40. International Stem Cell I, Adewumi O, Aflatoonian B et al (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 25, 803-816 https://doi.org/10.1038/nbt1318
  41. Buishand FO, Arkesteijn GJ, Feenstra LR et al (2016) Identification of CD90 as Putative Cancer Stem Cell Marker and Therapeutic Target in Insulinomas. Stem Cells Dev 25, 826-835 https://doi.org/10.1089/scd.2016.0032
  42. He J, Liu Y, Zhu T et al (2012) CD90 is identified as a candidate marker for cancer stem cells in primary high-grade gliomas using tissue microarrays. Mol Cell Proteomics 11, M111 010744
  43. Yang ZF, Ho DW, Ng MN et al (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13, 153-166 https://doi.org/10.1016/j.ccr.2008.01.013
  44. Ng VY, Ang SN, Chan JX and Choo AB (2010) Characterization of epithelial cell adhesion molecule as a surface marker on undifferentiated human embryonic stem cells. Stem Cells 28, 29-35 https://doi.org/10.1002/stem.221
  45. Patriarca C, Macchi RM, Marschner AK and Mellstedt H (2012) Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treat Rev 38, 68-75 https://doi.org/10.1016/j.ctrv.2011.04.002
  46. Yamashita T, Ji J, Budhu A et al (2009) EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 136, 1012-1024 https://doi.org/10.1053/j.gastro.2008.12.004
  47. Bianco C, Rangel MC, Castro NP et al (2010) Role of Cripto-1 in stem cell maintenance and malignant progression. Am J Pathol 177, 532-540 https://doi.org/10.2353/ajpath.2010.100102
  48. Bianco C and Salomon DS (2010) Targeting the embryonic gene Cripto-1 in cancer and beyond. Expert Opin Ther Pat 20, 1739-1749 https://doi.org/10.1517/13543776.2010.530659
  49. Choo AB, Tan HL, Ang SN et al (2008) Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells 26, 1454-1463 https://doi.org/10.1634/stemcells.2007-0576
  50. Kelley TW, Huntsman D, McNagny KM, Roskelley CD and Hsi ED (2005) Podocalyxin: a marker of blasts in acute leukemia. Am J Clin Pathol 124, 134-142 https://doi.org/10.1309/7BHLAHHU0N4MHT7Q
  51. Koch LK, Zhou H, Ellinger J et al (2008) Stem cell marker expression in small cell lung carcinoma and developing lung tissue. Hum Pathol 39, 1597-1605 https://doi.org/10.1016/j.humpath.2008.03.008
  52. Padmanabhan R, Chen KG and Gottesman MM (2014) Lost in Translation: Regulation of ABCG2 Expression in Human Embryonic Stem Cells. J Stem Cell Res Ther 4, 24230
  53. Apati A, Orban TI, Varga N et al (2008) High level functional expression of the ABCG2 multidrug transporter in undifferentiated human embryonic stem cells. Biochim Biophys Acta 1778, 2700-2709 https://doi.org/10.1016/j.bbamem.2008.08.010
  54. Sarkadi B, Orban TI, Szakacs G et al (2010) Evaluation of ABCG2 expression in human embryonic stem cells: crossing the same river twice? Stem Cells 28, 174-176 https://doi.org/10.1002/stem.262
  55. Ho MM, Ng AV, Lam S and Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67, 4827-4833 https://doi.org/10.1158/0008-5472.CAN-06-3557
  56. Kristiansen G, Sammar M and Altevogt P (2004) Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 35, 255-262
  57. Zhang C, Li C, He F, Cai Y and Yang H (2011) Identification of CD44+CD24+ gastric cancer stem cells. J Cancer Res Clin Oncol 137, 1679-1686 https://doi.org/10.1007/s00432-011-1038-5
  58. Yu KR, Yang SR, Jung JW et al (2012) CD49f enhances multipotency and maintains stemness through the direct regulation of OCT4 and SOX2. Stem Cells 30, 876-887 https://doi.org/10.1002/stem.1052
  59. Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I and Dick JE (2011) Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333, 218-221 https://doi.org/10.1126/science.1201219
  60. Lathia JD, Gallagher J, Heddleston JM et al (2010) Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6, 421-432 https://doi.org/10.1016/j.stem.2010.02.018
  61. Yen WC, Fischer MM, Axelrod F et al (2015) Targeting notch signaling with a notch2/notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin Cancer Res 21, 2084-2095 https://doi.org/10.1158/1078-0432.CCR-14-2808
  62. Fox V, Gokhale PJ, Walsh JR, Matin M, Jones M and Andrews PW (2008) Cell-cell signaling through NOTCH regulates human embryonic stem cell proliferation. Stem Cells 26, 715-723 https://doi.org/10.1634/stemcells.2007-0368
  63. Imayoshi I, Sakamoto M, Yamaguchi M, Mori K and Kageyama R (2010) Essential Roles of Notch Signaling in Maintenance of Neural Stem Cells in Developing and Adult Brains. J Neurosci 30, 3489-3498 https://doi.org/10.1523/JNEUROSCI.4987-09.2010
  64. Nodomi S, Umeda K, Saida S et al (2016) CD146 is a novel marker for highly tumorigenic cells and a potential therapeutic target in malignant rhabdoid tumor. Oncogene 35, 5317-5327 https://doi.org/10.1038/onc.2016.72
  65. Wei Q, Tang YJ, Voisin V et al (2015) Identification of CD146 as a marker enriched for tumor-propagating capacity reveals targetable pathways in primary human sarcoma. Oncotarget 6, 40283-40294
  66. Galy A, Travis M, Cen D and Chen B (1995) Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3, 459-473 https://doi.org/10.1016/1074-7613(95)90175-2
  67. Mariotti E, Mirabelli P, Abate G et al (2008) Comparative characteristics of mesenchymal stem cells from human bone marrow and placenta: CD10, CD49d, and CD56 make a difference. Stem Cells Dev 17, 1039-1041 https://doi.org/10.1089/scd.2008.0212
  68. Fukusumi T, Ishii H, Konno M et al (2014) CD10 as a novel marker of therapeutic resistance and cancer stem cells in head and neck squamous cell carcinoma. Br J Cancer 111, 506-514 https://doi.org/10.1038/bjc.2014.289
  69. Maguer-Satta V, Chapellier M, Delay E and Bachelard-Cascales E (2011) CD10: a tool to crack the role of stem cells in breast cancer. Proc Natl Acad Sci U S A 108, E1264; author reply E1265 https://doi.org/10.1073/pnas.1116567108
  70. Carpenter MK, Rosler ES, Fisk GJ et al (2004) Properties of four human embryonic stem cell lines maintained in a feeder-free culture system. Dev Dyn 229, 243-258 https://doi.org/10.1002/dvdy.10431
  71. Miettinen M and Lasota J (2005) KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol 13, 205-220 https://doi.org/10.1097/01.pai.0000173054.83414.22
  72. Chen J, Wang J, Chen D et al (2013) Evaluation of characteristics of CD44+CD117+ ovarian cancer stem cells in three dimensional basement membrane extract scaffold versus two dimensional monocultures. BMC Cell Biol 14, 7 https://doi.org/10.1186/1471-2121-14-7
  73. Ou X, O'Leary HA and Broxmeyer HE (2013) Implications of DPP4 modification of proteins that regulate stem/progenitor and more mature cell types. Blood 122, 161-169 https://doi.org/10.1182/blood-2013-02-487470
  74. Herrmann H, Sadovnik I, Cerny-Reiterer S et al (2014) Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood 123, 3951-3962 https://doi.org/10.1182/blood-2013-10-536078
  75. Pang R, Law WL, Chu AC et al (2010) A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 6, 603-615 https://doi.org/10.1016/j.stem.2010.04.001
  76. Zhang L, Hua Q, Tang K, Shi C, Xie X and Zhang R (2016) CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells. Neuroscience 337, 88-97 https://doi.org/10.1016/j.neuroscience.2016.09.001
  77. Li M, Chang CJ, Lathia JD et al (2011) Chemokine receptor CXCR4 signaling modulates the growth factor-induced cell cycle of self-renewing and multipotent neural progenitor cells. Glia 59, 108-118 https://doi.org/10.1002/glia.21080
  78. Mukherjee D and Zhao J (2013) The Role of chemokine receptor CXCR4 in breast cancer metastasis. Am J Cancer Res 3, 46-57
  79. Dubrovska A, Hartung A, Bouchez LC et al (2012) CXCR4 activation maintains a stem cell population in tamoxifen-resistant breast cancer cells through AhR signalling. Br J Cancer 107, 43-52 https://doi.org/10.1038/bjc.2012.105
  80. Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF and Shaper JH (1984) Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 133, 157-165
  81. Sutherland HJ, Lansdorp PM, Henkelman DH, Eaves AC and Eaves CJ (1990) Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc Natl Acad Sci U S A 87, 3584-3588 https://doi.org/10.1073/pnas.87.9.3584
  82. Schober M and Fuchs E (2011) Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-beta and integrin/focal adhesion kinase (FAK) signaling. Proc Natl Acad Sci U S A 108, 10544-10549 https://doi.org/10.1073/pnas.1107807108
  83. Buhring HJ, Battula VL, Treml S, Schewe B, Kanz L and Vogel W (2007) Novel markers for the prospective isolation of human MSC. Ann NY Acad Sci 1106, 262-271 https://doi.org/10.1196/annals.1392.000
  84. Quintana E, Shackleton M, Foster HR et al (2010) Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18, 510-523 https://doi.org/10.1016/j.ccr.2010.10.012
  85. Bhagwat SV, Lahdenranta J, Giordano R, Arap W, Pasqualini R and Shapiro LH (2001) CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood 97, 652-659 https://doi.org/10.1182/blood.V97.3.652
  86. Rahman MM, Subramani J, Ghosh M et al (2014) CD13 promotes mesenchymal stem cell-mediated regeneration of ischemic muscle. Front Physiol 4, 402
  87. Haraguchi N, Ishii H, Mimori K et al (2010) CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest 120, 3326-3339 https://doi.org/10.1172/JCI42550
  88. Salcido CD, Larochelle A, Taylor BJ, Dunbar CE and Varticovski L (2010) Molecular characterisation of side population cells with cancer stem cell-like characteristics in small-cell lung cancer. Br J Cancer 102, 1636-1644 https://doi.org/10.1038/sj.bjc.6605668
  89. Shimojima M, Nishimura Y, Miyazawa T, Kato K, Tohya Y and Akashi H (2003) CD56 expression in feline lymphoid cells. J Vet Med Sci 65, 769-773 https://doi.org/10.1292/jvms.65.769
  90. Altomonte M, Montagner R, Fonsatti E et al (1996) Expression and structural features of endoglin (CD105), a transforming growth factor beta1 and beta3 binding protein, in human melanoma. Br J Cancer 74, 1586-1591 https://doi.org/10.1038/bjc.1996.593
  91. Maleki M, Ghanbarvand F, Reza Behvarz M, Ejtemaei M and Ghadirkhomi E (2014) Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells 7, 118-126 https://doi.org/10.15283/ijsc.2014.7.2.118
  92. Saroufim A, Messai Y, Hasmim M et al (2014) Tumoral CD105 is a novel independent prognostic marker for prognosis in clear-cell renal cell carcinoma. Br J Cancer 110, 1778-1784 https://doi.org/10.1038/bjc.2014.71
  93. Forster R, Chiba K, Schaeffer L et al (2014) Human intestinal tissue with adult stem cell properties derived from pluripotent stem cells. Stem Cell Rep 2, 838-852 https://doi.org/10.1016/j.stemcr.2014.05.001
  94. Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007 https://doi.org/10.1038/nature06196
  95. Barker N, Tan S and Clevers H (2013) Lgr proteins in epithelial stem cell biology. Development 140, 2484-2494 https://doi.org/10.1242/dev.083113
  96. Barker N, Ridgway RA, van Es JH et al (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608-611 https://doi.org/10.1038/nature07602
  97. Kemper K, Prasetyanti PR, De Lau W, Rodermond H, Clevers H and Medema JP (2012) Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells 30, 2378-2386 https://doi.org/10.1002/stem.1233
  98. Hirsch D, Barker N, McNeil N et al (2014) LGR5 positivity defines stem-like cells in colorectal cancer. Carcinogenesis 35, 849-858 https://doi.org/10.1093/carcin/bgt377
  99. Ward AC (2007) The role of the granulocyte colony-stimulating factor receptor (G-CSF-R) in disease. Front Biosci 12, 608-618 https://doi.org/10.2741/2086
  100. Zage PE, Whittle SB and Shohet JM (2017) CD114: A New Member of the Neural Crest-Derived Cancer Stem Cell Marker Family. J Cell Biochem 118, 221-231 https://doi.org/10.1002/jcb.25656
  101. Hsu DM, Agarwal S, Benham A et al (2013) G-CSF receptor positive neuroblastoma subpopulations are enriched in chemotherapy-resistant or relapsed tumors and are highly tumorigenic. Cancer Res 73, 4134-4146 https://doi.org/10.1158/0008-5472.CAN-12-4056
  102. Tohma S, Ramberg JE and Lipsky PE (1992) Expression and distribution of CD11a/CD18 and CD54 during human T cell-B cell interactions. J Leukoc Biol 52, 97-103 https://doi.org/10.1002/jlb.52.1.97
  103. Amaral AT, Manara MC, Berghuis D et al (2014) Characterization of human mesenchymal stem cells from ewing sarcoma patients. Pathogenetic implications. PLoS One 9, e85814 https://doi.org/10.1371/journal.pone.0085814
  104. Chen T, Yang K, Yu J et al (2012) Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients. Cell Res 22, 248-258 https://doi.org/10.1038/cr.2011.109
  105. Wilson S, Wilkinson G and Milligan G (2005) The CXCR1 and CXCR2 receptors form constitutive homoand heterodimers selectively and with equal apparent affinities. J Biol Chem 280, 28663-28674 https://doi.org/10.1074/jbc.M413475200
  106. Ringe J, Strassburg S, Neumann K et al (2007) Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem 101, 135-146 https://doi.org/10.1002/jcb.21172
  107. Singh JK, Farnie G, Bundred NJ et al (2013) Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and -independent mechanisms. Clin Cancer Res 19, 643-656 https://doi.org/10.1158/1078-0432.CCR-12-1063
  108. Chen L, Fan J, Chen H et al (2014) The IL-8/CXCR1 axis is associated with cancer stem cell-like properties and correlates with clinical prognosis in human pancreatic cancer cases. Sci Rep 4, 5911
  109. Kikushige Y, Shima T, Takayanagi S et al (2010) TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell 7, 708-717 https://doi.org/10.1016/j.stem.2010.11.014
  110. Ikeda J, Morii E, Liu Y et al (2008) Prognostic significance of CD55 expression in breast cancer. Clin Cancer Res 14, 4780-4786 https://doi.org/10.1158/1078-0432.CCR-07-1844
  111. Pellegrinet L, Rodilla V, Liu Z et al (2011) Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology 140, 1230-1240 e1231-1237 https://doi.org/10.1053/j.gastro.2011.01.005
  112. Hoey T, Yen WC, Axelrod F et al (2009) DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 5, 168-177 https://doi.org/10.1016/j.stem.2009.05.019
  113. Fischer M, Yen WC, Kapoun AM et al (2011) Anti-DLL4 inhibits growth and reduces tumor-initiating cell frequency in colorectal tumors with oncogenic KRAS mutations. Cancer Res 71, 1520-1525 https://doi.org/10.1158/0008-5472.CAN-10-2817
  114. O'Keefe TL, Williams GT, Davies SL and Neuberger MS (1998) Mice carrying a CD20 gene disruption. Immunogenetics 48, 125-132 https://doi.org/10.1007/s002510050412
  115. Smith MR (2003) Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 22, 7359-7368 https://doi.org/10.1038/sj.onc.1206939
  116. Fang D, Nguyen TK, Leishear K et al (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65, 9328-9337 https://doi.org/10.1158/0008-5472.CAN-05-1343
  117. Wang PL, O'Farrell S, Clayberger C and Krensky AM (1992) Identification and molecular cloning of tactile. A novel human T cell activation antigen that is a member of the Ig gene superfamily. J Immunol 148, 2600-2608
  118. Martinet L and Smyth MJ (2015) Balancing natural killer cell activation through paired receptors. Nat Rev Immunol 15, 243-254 https://doi.org/10.1038/nri3799
  119. Garg S, Madkaikar M and Ghosh K (2013) Investigating cell surface markers on normal hematopoietic stem cells in three different niche conditions. Int J Stem Cells 6, 129-133 https://doi.org/10.15283/ijsc.2013.6.2.129
  120. Hosen N, Park CY, Tatsumi N et al (2007) CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci U S A 104, 11008-11013 https://doi.org/10.1073/pnas.0704271104
  121. Goodfellow PJ, Nevanlinna HA, Gorman P, Sheer D, Lam G and Goodfellow PN (1989) Assignment of the gene encoding the beta-subunit of the human fibronectin receptor (beta-FNR) to chromosome 10p11.2. Ann Hum Genet 53, 15-22 https://doi.org/10.1111/j.1469-1809.1989.tb01118.x
  122. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147 https://doi.org/10.1126/science.284.5411.143
  123. Vassilopoulos A, Chisholm C, Lahusen T, Zheng H and Deng CX (2014) A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brca1-associated mouse model of breast cancer. Oncogene 33, 5477-5482 https://doi.org/10.1038/onc.2013.516
  124. Zoller M (2009) Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer 9, 40-55 https://doi.org/10.1038/nrc2543
  125. Kim YJ, Yu JM, Joo HJ et al (2007) Role of CD9 in proliferation and proangiogenic action of human adipose-derived mesenchymal stem cells. Pflugers Arch 455, 283-296 https://doi.org/10.1007/s00424-007-0285-4
  126. Yamazaki H, Xu CW, Naito M et al (2011) Regulation of cancer stem cell properties by CD9 in human B-acute lymphoblastic leukemia. Biochem Biophys Res Commun 409, 14-21 https://doi.org/10.1016/j.bbrc.2011.04.098
  127. Zannettino AC, Paton S, Arthur A et al (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214, 413-421 https://doi.org/10.1002/jcp.21210
  128. Wang F, Scoville D, He XC et al (2013) Isolation and characterization of intestinal stem cells based on surface marker combinations and colony-formation assay. Gastroenterology 145, 383-395 e381-321 https://doi.org/10.1053/j.gastro.2013.04.050
  129. Levin TG, Powell AE, Davies PS et al (2010) Characterization of the intestinal cancer stem cell marker CD166 in the human and mouse gastrointestinal tract. Gastroenterology 139, 2072-2082 e2075 https://doi.org/10.1053/j.gastro.2010.08.053
  130. Tachezy M, Zander H, Wolters-Eisfeld G et al (2014) Activated leukocyte cell adhesion molecule (CD166): an "inert" cancer stem cell marker for non-small cell lung cancer? Stem Cells 32, 1429-1436 https://doi.org/10.1002/stem.1665
  131. Thapa R and Wilson GD (2016) The Importance of CD44 as a Stem Cell Biomarker and Therapeutic Target in Cancer. Stem Cells Int 2016, 2087204
  132. Lapidot T, Dar A and Kollet O (2005) How do stem cells find their way home? Blood 106, 1901-1910 https://doi.org/10.1182/blood-2005-04-1417
  133. Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13, 4279-4295 https://doi.org/10.1091/mbc.E02-02-0105
  134. Zoller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 11, 254-267 https://doi.org/10.1038/nrc3023
  135. Jaggupilli A and Elkord E (2012) Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol 2012, 708036
  136. Nagano O, Okazaki S and Saya H (2013) Redox regulation in stem-like cancer cells by CD44 variant isoforms. Oncogene 32, 5191-5198 https://doi.org/10.1038/onc.2012.638
  137. Hirata K, Suzuki H, Imaeda H et al (2013) CD44 variant 9 expression in primary early gastric cancer as a predictive marker for recurrence. Br J Cancer 109, 379-386 https://doi.org/10.1038/bjc.2013.314
  138. Yoshikawa M, Tsuchihashi K, Ishimoto T et al (2013) xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma. Cancer Res 73, 1855-1866 https://doi.org/10.1158/0008-5472.CAN-12-3609-T
  139. Ishimoto T, Nagano O, Yae T et al (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 19, 387-400 https://doi.org/10.1016/j.ccr.2011.01.038
  140. Lau WM, Teng E, Chong HS et al (2014) CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res 74, 2630-2641 https://doi.org/10.1158/0008-5472.CAN-13-2309
  141. Ksander BR, Kolovou PE, Wilson BJ et al (2014) ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature 511, 353-357 https://doi.org/10.1038/nature13426
  142. Schatton T, Murphy GF, Frank NY et al (2008) Identification of cells initiating human melanomas. Nature 451, 345-349 https://doi.org/10.1038/nature06489
  143. Miyauchi J, Kelleher CA, Yang YC et al (1987) The effects of three recombinant growth factors, IL-3, GM-CSF, and G-CSF, on the blast cells of acute myeloblastic leukemia maintained in short-term suspension culture. Blood 70, 657-663
  144. Sadras T, Perugini M, Kok CH et al (2014) Interleukin-3-mediated regulation of beta-catenin in myeloid transformation and acute myeloid leukemia. J Leukoc Biol 96, 83-91 https://doi.org/10.1189/jlb.2AB1013-559R
  145. Brewer BG, Mitchell RA, Harandi A and Eaton JW (2009) Embryonic vaccines against cancer: an early history. Exp Mol Pathol 86, 192-197 https://doi.org/10.1016/j.yexmp.2008.12.002
  146. Sell S (2010) On the stem cell origin of cancer. Am J Pathol 176, 2584-2494 https://doi.org/10.2353/ajpath.2010.091064
  147. Stonehill EH and Bendich A (1970) Retrogenetic expression: the reappearance of embryonal antigens in cancer cells. Nature 228, 370-372 https://doi.org/10.1038/228370a0
  148. Klavins JV, Mesa-Tejada R and Weiss M (1971) Human carcinoma antigens cross reacting with anti-embryonic antibodies. Nat New Biol 234, 153-154
  149. Bendich A, Borenfreund E and Stonehill EH (1973) Protection of adult mice against tumor challenge by immunization with irradiated adult skin or embryo cells. J Immunol 111, 284-285
  150. Adinolfi M and Lessof MH (1985) Cancer, oncogenes and oncofetal antigens. Q J Med 54, 193-204
  151. Li Y, Zeng H, Xu RH, Liu B and Li Z (2009) Vaccination with human pluripotent stem cells generates a broad spectrum of immunological and clinical responses against colon cancer. Stem Cells 27, 3103-3111
  152. Dong W, Du J, Shen H et al (2010) Administration of embryonic stem cells generates effective antitumor immunity in mice with minor and heavy tumor load. Cancer Immunol Immunother 59, 1697-1705 https://doi.org/10.1007/s00262-010-0899-9
  153. Yaddanapudi K, Mitchell RA, Putty K et al (2012) Vaccination with embryonic stem cells protects against lung cancer: is a broad-spectrum prophylactic vaccine against cancer possible? PLoS One 7, e42289 https://doi.org/10.1371/journal.pone.0042289
  154. Kim J, Woo AJ, Chu J et al (2010) A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 143, 313-324 https://doi.org/10.1016/j.cell.2010.09.010
  155. Ben-Porath I, Thomson MW, Carey VJ et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40, 499-507 https://doi.org/10.1038/ng.127
  156. Narva E, Autio R, Rahkonen N et al (2010) High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol 28, 371-377 https://doi.org/10.1038/nbt.1615
  157. Lee AS, Tang C, Rao MS, Weissman IL and Wu JC (2013) Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19, 998-1004 https://doi.org/10.1038/nm.3267
  158. Dvorak P, Dvorakova D and Hampl A (2006) Fibroblast growth factor signaling in embryonic and cancer stem cells. FEBS Lett 580, 2869-2874 https://doi.org/10.1016/j.febslet.2006.01.095
  159. Clarke MF and Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124, 1111-1115 https://doi.org/10.1016/j.cell.2006.03.011
  160. Choi HS, Kim H, Won A et al (2008) Development of a decoy immunization strategy to identify cell-surface molecules expressed on undifferentiated human embryonic stem cells. Cell Tissue Res 333, 197-206 https://doi.org/10.1007/s00441-008-0632-6
  161. Choi HS, Kim WT, Kim H et al (2011) Identification and characterization of adenovirus early region 1B-associated protein 5 as a surface marker on undifferentiated human embryonic stem cells. Stem Cells Dev 20, 609-620 https://doi.org/10.1089/scd.2010.0265
  162. Kim WT, Seo Choi H, Min Lee H, Jang YJ and Ryu CJ (2014) B-cell receptor-associated protein 31 regulates human embryonic stem cell adhesion, stemness, and survival via control of epithelial cell adhesion molecule. Stem Cells 32, 2626-2641 https://doi.org/10.1002/stem.1765
  163. Medof ME, Lublin DM, Holers VM et al (1987) Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement. Proc Natl Acad Sci U S A 84, 2007-2011 https://doi.org/10.1073/pnas.84.7.2007
  164. Stashenko P, Nadler LM, Hardy R and Schlossman SF (1980) Characterization of a human B lymphocyte-specific antigen. J Immunol 125, 1678-1685
  165. Reff ME, Carner K, Chambers KS et al (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83, 435-445
  166. Gramatzki M, Ludwig WD, Burger R et al (1998) Antibodies TC-12 ("unique") and TH-111 (CD96) characterize T-cell acute lymphoblastic leukemia and a subgroup of acute myeloid leukemia. Exp Hematol 26, 1209-1214

Cited by

  1. Tumor Acidic Microenvironment Targeted Drug Delivery Based on pHLIP-Modified Mesoporous Organosilica Nanoparticles vol.9, pp.36, 2017, https://doi.org/10.1021/acsami.7b10840
  2. Interaction of lncRNA-MALAT1 and miR-124 regulates HBx-induced cancer stem cell properties in HepG2 through PI3K/Akt signaling pp.07302312, 2018, https://doi.org/10.1002/jcb.26823
  3. The Mechanobiology of the Actin Cytoskeleton in Stem Cells during Differentiation and Interaction with Biomaterials vol.2018, pp.1687-9678, 2018, https://doi.org/10.1155/2018/2891957
  4. Development of a novel and economical agar-based non-adherent three-dimensional culture method for enrichment of cancer stem-like cells vol.9, pp.1, 2018, https://doi.org/10.1186/s13287-018-0987-x
  5. Targeted Photodynamic Therapy: A Novel Approach to Abolition of Human Cancer Stem Cells vol.2018, pp.1687-9392, 2018, https://doi.org/10.1155/2018/7317063
  6. Towards precision medicine: linking genetic and cellular heterogeneity in gastric cancer vol.10, pp.1758-8359, 2018, https://doi.org/10.1177/1758835918794628
  7. Tracing the path of cancer initiation: the AA protein-based model for cancer genesis vol.18, pp.1, 2018, https://doi.org/10.1186/s12885-018-4739-1
  8. Therapeutic Opportunities of Targeting Histone Deacetylase Isoforms to Eradicate Cancer Stem Cells vol.19, pp.7, 2018, https://doi.org/10.3390/ijms19071939
  9. The Use of Normal Stem Cells and Cancer Stem Cells for Potential Anti-Cancer Therapeutic Strategy vol.15, pp.4, 2018, https://doi.org/10.1007/s13770-018-0128-8
  10. The role of CD133 in cancer: a concise review vol.7, pp.1, 2018, https://doi.org/10.1186/s40169-018-0198-1
  11. Cancer Stem Cell Metabolism and Potential Therapeutic Targets vol.8, pp.2234-943X, 2018, https://doi.org/10.3389/fonc.2018.00203
  12. Phenethyl Isothiocyanate Exposure Promotes Oxidative Stress and Suppresses Sp1 Transcription Factor in Cancer Stem Cells vol.20, pp.5, 2019, https://doi.org/10.3390/ijms20051027
  13. Therapeutic targeting of lipid synthesis metabolism for selective elimination of cancer stem cells vol.42, pp.1, 2019, https://doi.org/10.1007/s12272-018-1098-z