DOI QR코드

DOI QR Code

Clinical significance linked to functional defects in bone morphogenetic protein type 2 receptor, BMPR2

  • Kim, Myung-Jin (Department of Biological Sciences, Sookmyung Women's University) ;
  • Park, Seon Young (Department of Biological Sciences, Sookmyung Women's University) ;
  • Chang, Hae Ryung (Department of Biological Sciences, Sookmyung Women's University) ;
  • Jung, Eun Young (Department of Biological Sciences, Sookmyung Women's University) ;
  • Munkhjargal, Anudari (Department of Biological Sciences, Sookmyung Women's University) ;
  • Lim, Jong-Seok (Department of Biological Sciences, Sookmyung Women's University) ;
  • Lee, Myeong-Sok (Department of Biological Sciences, Sookmyung Women's University) ;
  • Kim, Yonghwan (Department of Biological Sciences, Sookmyung Women's University)
  • Received : 2017.04.09
  • Published : 2017.06.30

Abstract

Bone morphogenetic protein type 2 receptor (BMPR2) is one of the transforming growth $factor-{\beta}$ ($TGF-{\beta}$) superfamily receptors, performing diverse roles during embryonic development, vasculogenesis, and osteogenesis. Human BMPR2 consists of 1,038 amino acids, and contains functionally conserved extracellular, transmembrane, kinase, and C-terminal cytoplasmic domains. Bone morphogenetic proteins (BMPs) engage the tetrameric complex, composed of BMPR2 and its corresponding type 1 receptors, which initiates SMAD proteins-mediated signal transduction leading to the expression of target genes implicated in the development or differentiation of the embryo, organs and bones. In particular, genetic alterations of BMPR2 gene are associated with several clinical disorders, including representative pulmonary arterial hypertension, cancers, and metabolic diseases, thus demonstrating the physiological importance of BMPR2. In this mini review, we summarize recent findings regarding the molecular basis of BMPR2 functions in BMP signaling, and the versatile roles of BMPR2. In addition, various aspects of experimentally validated pathogenic mutations of BMPR2 and the linked human diseases will also be discussed, which are important in clinical settings for diagnostics and treatment.

Keywords

References

  1. Harper RL, Reynolds AM, Bonder CS and Reynolds PN (2016) BMPR2 gene therapy for PAH acts via Smad and non-Smad signalling. Respirology 21, 727-733 https://doi.org/10.1111/resp.12729
  2. Zhang D, Mehler MF, Song Q and Kessler JA (1998) Development of bone morphogenetic protein receptors in the nervous system and possible roles in regulating trkC expression. J Neurosci 18, 3314-3326 https://doi.org/10.1523/JNEUROSCI.18-09-03314.1998
  3. Franzen A, Piek E, Westermark B, ten Dijke P and Heldin NE (1999) Expression of transforming growth factor-beta1, activin A, and their receptors in thyroid follicle cells: negative regulation of thyrocyte growth and function. Endocrinology 140, 4300-4310 https://doi.org/10.1210/endo.140.9.6961
  4. Rege J, Nishimoto HK, Nishimoto K, Rodgers RJ, Auchus RJ and Rainey WE (2015) Bone Morphogenetic Protein-4 (BMP4): A Paracrine Regulator of Human Adrenal C19 Steroid Synthesis. Endocrinology 156, 2530-2540 https://doi.org/10.1210/en.2014-1942
  5. Wu X, Sagave J, Rutkovskiy A et al (2014) Expression of bone morphogenetic protein 4 and its receptors in the remodeling heart. Life Sci 97, 145-154 https://doi.org/10.1016/j.lfs.2013.12.030
  6. Mayeur C, Leyton PA, Kolodziej SA, Yu B and Bloch KD (2014) BMP type II receptors have redundant roles in the regulation of hepatic hepcidin gene expression and iron metabolism. Blood 124, 2116-2123 https://doi.org/10.1182/blood-2014-04-572644
  7. Dichmann DS, Miller CP, Jensen J, Scott Heller R and Serup P (2003) Expression and misexpression of members of the FGF and TGFbeta families of growth factors in the developing mouse pancreas. Dev Dyn 226, 663-674 https://doi.org/10.1002/dvdy.10270
  8. Bush KT, Sakurai H, Steer DL et al (2004) TGF-beta superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud. Dev Biol 266, 285-298 https://doi.org/10.1016/j.ydbio.2003.10.023
  9. Nagashima T, Li Q, Clementi C, Lydon JP, DeMayo FJ and Matzuk MM (2013) BMPR2 is required for postimplantation uterine function and pregnancy maintenance. J Clin Invest 123, 2539-2550 https://doi.org/10.1172/JCI65710
  10. Wiley DM and Jin SW (2011) Bone Morphogenetic Protein functions as a context-dependent angiogenic cue in vertebrates. Semin Cell Dev Biol 22, 1012-1018 https://doi.org/10.1016/j.semcdb.2011.10.005
  11. Heinecke K, Seher A, Schmitz W, Mueller TD, Sebald W and Nickel J (2009) Receptor oligomerization and beyond: a case study in bone morphogenetic proteins. BMC Biol 7, 59 https://doi.org/10.1186/1741-7007-7-59
  12. Morrell NW (2006) Pulmonary hypertension due to BMPR2 mutation: a new paradigm for tissue remodeling? Proc Am Thorac Soc 3, 680-686 https://doi.org/10.1513/pats.200605-118SF
  13. Rigelsky CM, Jennings C, Lehtonen R, Minai OA, Eng C and Aldred MA (2008) BMPR2 mutation in a patient with pulmonary arterial hypertension and suspected hereditary hemorrhagic telangiectasia. Am J Med Genet A 146A, 2551-2556 https://doi.org/10.1002/ajmg.a.32468
  14. Kim IY, Lee DH, Ahn HJ et al (2000) Expression of bone morphogenetic protein receptors type-IA, -IB and -II correlates with tumor grade in human prostate cancer tissues. Cancer Res 60, 2840-2844
  15. Park SW, Hur SY, Yoo NJ and Lee SH (2010) Somatic frameshift mutations of bone morphogenic protein receptor 2 gene in gastric and colorectal cancers with microsatellite instability. APMIS 118, 824-829 https://doi.org/10.1111/j.1600-0463.2010.02670.x
  16. Schleinitz D, Kloting N, Bottcher Y et al (2011) Genetic and evolutionary analyses of the human bone morphogenetic protein receptor 2 (BMPR2) in the pathophysiology of obesity. PLoS One 6, e16155 https://doi.org/10.1371/journal.pone.0016155
  17. Wu M, Chen G and Li YP (2016) TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4, 16009 https://doi.org/10.1038/boneres.2016.9
  18. Miyazono K, Kamiya Y and Morikawa M (2010) Bone morphogenetic protein receptors and signal transduction. J Biochem 147, 35-51 https://doi.org/10.1093/jb/mvp148
  19. Kang Q, Sun MH, Cheng H et al (2004) Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther 11, 1312-1320 https://doi.org/10.1038/sj.gt.3302298
  20. Luu HH, Song WX, Luo X et al (2007) Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res 25, 665-677 https://doi.org/10.1002/jor.20359
  21. Razzouk S and Sarkis R (2012) BMP-2: biological challenges to its clinical use. N Y State Dent J 78, 37-39
  22. Kanakaris NK and Giannoudis PV (2008) Clinical applications of bone morphogenetic proteins: current evidence. J Surg Orthop Adv 17, 133-146
  23. Sun J, Li J, Li C and Yu Y (2015) Role of bone morphogenetic protein-2 in osteogenic differentiation of mesenchymal stem cells. Mol Med Rep 12, 4230-4237 https://doi.org/10.3892/mmr.2015.3954
  24. Hyun SJ, Han DK, Choi SH et al (2005) Effect of recombinant human bone morphogenetic protein-2, -4, and -7 on bone formation in rat calvarial defects. J Periodontol 76, 1667-1674 https://doi.org/10.1902/jop.2005.76.10.1667
  25. King JA, Marker PC, Seung KJ and Kingsley DM (1994) BMP5 and the molecular, skeletal, and soft-tissue alterations in short ear mice. Dev Biol 166, 112-122 https://doi.org/10.1006/dbio.1994.1300
  26. Pi CJ, Liang KL, Ke ZY et al (2016) Adenovirus-mediated expression of vascular endothelial growth factor-a potentiates bone morphogenetic protein9-induced osteogenic differentiation and bone formation. Biol Chem 397, 765-775
  27. Daluiski A, Engstrand T, Bahamonde ME et al (2001) Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet 27, 84-88
  28. Hogan BL (1996) Bone morphogenetic proteins in development. Curr Opin Genet Dev 6, 432-438 https://doi.org/10.1016/S0959-437X(96)80064-5
  29. Zhao GQ (2003) Consequences of knocking out BMP signaling in the mouse. Genesis 35, 43-56 https://doi.org/10.1002/gene.10167
  30. Zhang H and Bradley A (1996) Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122, 2977-2986
  31. Winnier G, Blessing M, Labosky PA and Hogan BL (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9, 2105-2116 https://doi.org/10.1101/gad.9.17.2105
  32. Jena N, Martin-Seisdedos C, McCue P and Croce CM (1997) BMP7 null mutation in mice: developmental defects in skeleton, kidney, and eye. Exp Cell Res 230, 28-37 https://doi.org/10.1006/excr.1996.3411
  33. Kim RY, Robertson EJ and Solloway MJ (2001) Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart. Dev Biol 235, 449-466 https://doi.org/10.1006/dbio.2001.0284
  34. Tillet E and Bailly S (2014) Emerging roles of BMP9 and BMP10 in hereditary hemorrhagic telangiectasia. Front Genet 5, 456
  35. Rao SM, Ugale GM and Warad SB (2013) Bone morphogenetic proteins: periodontal regeneration. N Am J Med Sci 5, 161-168 https://doi.org/10.4103/1947-2714.109175
  36. Sieber C, Kopf J, Hiepen C and Knaus P (2009) Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev 20, 343-355 https://doi.org/10.1016/j.cytogfr.2009.10.007
  37. Lin SJ, Lerch TF, Cook RW, Jardetzky TS and Woodruff TK (2006) The structural basis of TGF-beta, bone morphogenetic protein, and activin ligand binding. Reproduction 132, 179-190 https://doi.org/10.1530/rep.1.01072
  38. van Dinther M, Visser N, de Gorter DJ et al (2010) ALK2 R206H mutation linked to fibrodysplasia ossificans progressiva confers constitutive activity to the BMP type I receptor and sensitizes mesenchymal cells to BMPinduced osteoblast differentiation and bone formation. J Bone Miner Res 25, 1208-1215
  39. Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR and Lyons KM (2005) Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A 102, 5062-5067 https://doi.org/10.1073/pnas.0500031102
  40. Amsalem AR, Marom B, Shapira KE et al (2016) Differential regulation of translation and endocytosis of alternatively spliced forms of the type II bone morphogenetic protein (BMP) receptor. Mol Biol Cell 27, 716-730 https://doi.org/10.1091/mbc.E15-08-0547
  41. Lane KB, Machado RD, Pauciulo MW et al (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet 26, 81-84 https://doi.org/10.1038/79226
  42. Deng Z, Morse JH, Slager SL et al (2000) Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 67, 737-744 https://doi.org/10.1086/303059
  43. Rosenzweig BL, Imamura T, Okadome T et al (1995) Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci U S A 92, 7632-7636 https://doi.org/10.1073/pnas.92.17.7632
  44. Sopory S, Nelsen SM, Degnin C, Wong C and Christian JL (2006) Regulation of bone morphogenetic protein-4 activity by sequence elements within the prodomain. J Biol Chem 281, 34021-34031 https://doi.org/10.1074/jbc.M605330200
  45. Little SC and Mullins MC (2009) Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat Cell Biol 11, 637-643 https://doi.org/10.1038/ncb1870
  46. Sun P, Wang J, Zheng Y, Fan Y and Gu Z (2012) BMP2/7 heterodimer is a stronger inducer of bone regeneration in peri-implant bone defects model than BMP2 or BMP7 homodimer. Dent Mater J 31, 239-248 https://doi.org/10.4012/dmj.2011-191
  47. Knaus P and Sebald W (2001) Cooperativity of binding epitopes and receptor chains in the BMP/TGFbeta superfamily. Biol Chem 382, 1189-1195
  48. Greenwald J, Groppe J, Gray P et al (2003) The BMP7/ActRII extracellular domain complex provides new insights into the cooperative nature of receptor assembly. Mol Cell 11, 605-617 https://doi.org/10.1016/S1097-2765(03)00094-7
  49. Gilboa L, Nohe A, Geissendorfer T, Sebald W, Henis YI and Knaus P (2000) Bone morphogenetic protein receptor complexes on the surface of live cells: a new oligomerization mode for serine/threonine kinase receptors. Mol Biol Cell 11, 1023-1035 https://doi.org/10.1091/mbc.11.3.1023
  50. Nohe A, Hassel S, Ehrlich M et al (2002) The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. J Biol Chem 277, 5330-5338 https://doi.org/10.1074/jbc.M102750200
  51. Wrana JL, Attisano L, Carcamo J et al (1992) TGF beta signals through a heteromeric protein kinase receptor complex. Cell 71, 1003-1014 https://doi.org/10.1016/0092-8674(92)90395-S
  52. Koenig BB, Cook JS, Wolsing DH et al (1994) Characterization and cloning of a receptor for BMP-2 and BMP-4 from NIH 3T3 cells. Mol Cell Biol 14, 5961-5974 https://doi.org/10.1128/MCB.14.9.5961
  53. Miyazono K, Maeda S and Imamura T (2005) BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 16, 251-263 https://doi.org/10.1016/j.cytogfr.2005.01.009
  54. Hassel S, Eichner A, Yakymovych M, Hellman U, Knaus P and Souchelnytskyi S (2004) Proteins associated with type II bone morphogenetic protein receptor (BMPR-II) and identified by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 4, 1346-1358 https://doi.org/10.1002/pmic.200300770
  55. Heldin CH and Moustakas A (2012) Role of Smads in TGFbeta signaling. Cell Tissue Res 347, 21-36 https://doi.org/10.1007/s00441-011-1190-x
  56. Murakami G, Watabe T, Takaoka K, Miyazono K and Imamura T (2003) Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads. Mol Biol Cell 14, 2809-2817 https://doi.org/10.1091/mbc.E02-07-0441
  57. Zhu H, Kavsak P, Abdollah S, Wrana JL and Thomsen GH (1999) A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687-693 https://doi.org/10.1038/23293
  58. Ogata T, Wozney JM, Benezra R and Noda M (1993) Bone morphogenetic protein 2 transiently enhances expression of a gene, Id (inhibitor of differentiation), encoding a helix-loop-helix molecule in osteoblast-like cells. Proc Natl Acad Sci U S A 90, 9219-9222 https://doi.org/10.1073/pnas.90.19.9219
  59. Ogata T and Noda M (1991) Expression of Id, a negative regulator of helix-loop-helix DNA binding proteins, is down-regulated at confluence and enhanced by dexamethasone in a mouse osteoblastic cell line, MC3T3E1. Biochem Biophys Res Commun 180, 1194-1199 https://doi.org/10.1016/S0006-291X(05)81322-1
  60. Katagiri T, Imada M, Yanai T, Suda T, Takahashi N and Kamijo R (2002) Identification of a BMP-responsive element in Id1, the gene for inhibition of myogenesis. Genes Cells 7, 949-960 https://doi.org/10.1046/j.1365-2443.2002.00573.x
  61. Ito Y and Miyazono K (2003) RUNX transcription factors as key targets of TGF-beta superfamily signaling. Curr Opin Genet Dev 13, 43-47 https://doi.org/10.1016/S0959-437X(03)00007-8
  62. Maeda S, Hayashi M, Komiya S, Imamura T and Miyazono K (2004) Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J 23, 552-563 https://doi.org/10.1038/sj.emboj.7600067
  63. Lee S, Cho HY, Bui HT and Kang D (2014) The osteogenic or adipogenic lineage commitment of human mesenchymal stem cells is determined by protein kinase C delta. BMC Cell Biol 15, 42 https://doi.org/10.1186/s12860-014-0042-4
  64. Satija NK, Gurudutta GU, Sharma S et al (2007) Mesenchymal stem cells: molecular targets for tissue engineering. Stem Cells Dev 16, 7-23 https://doi.org/10.1089/scd.2006.9998
  65. Beppu H, Kawabata M, Hamamoto T et al (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221, 249-258 https://doi.org/10.1006/dbio.2000.9670
  66. Danesh SM, Villasenor A, Chong D, Soukup C and Cleaver O (2009) BMP and BMP receptor expression during murine organogenesis. Gene Expr Patterns 9, 255-265 https://doi.org/10.1016/j.gep.2009.04.002
  67. Dyer LA, Pi X and Patterson C (2014) The role of BMPs in endothelial cell function and dysfunction. Trends Endocrinol Metab 25, 472-480 https://doi.org/10.1016/j.tem.2014.05.003
  68. Atkinson C, Stewart S, Upton PD et al (2002) Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 105, 1672-1678 https://doi.org/10.1161/01.CIR.0000012754.72951.3D
  69. Finkenzeller G, Hager S and Stark GB (2012) Effects of bone morphogenetic protein 2 on human umbilical vein endothelial cells. Microvasc Res 84, 81-85 https://doi.org/10.1016/j.mvr.2012.03.010
  70. Langenfeld EM and Langenfeld J (2004) Bone morphogenetic protein-2 stimulates angiogenesis in developing tumors. Mol Cancer Res 2, 141-149
  71. Wiley DM, Kim JD, Hao J, Hong CC, Bautch VL and Jin SW (2011) Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat Cell Biol 13, 686-692 https://doi.org/10.1038/ncb2232
  72. de Jesus Perez VA, Alastalo TP, Wu JC et al (2009) Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt-beta-catenin and Wnt-RhoA-Rac1 pathways. J Cell Biol 184, 83-99 https://doi.org/10.1083/jcb.200806049
  73. Lee KM, Tsai KY, Wang N and Ingber DE (1998) Extracellular matrix and pulmonary hypertension: control of vascular smooth muscle cell contractility. Am J Physiol 274, H76-82
  74. Takahashi H, Goto N, Kojima Y et al (2006) Downregulation of type II bone morphogenetic protein receptor in hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 290, L450-458 https://doi.org/10.1152/ajplung.00206.2005
  75. Takahashi K, Kogaki S, Matsushita T, Nasuno S, Kurotobi S and Ozono K (2007) Hypoxia induces alteration of bone morphogenetic protein receptor signaling in pulmonary artery endothelial cell. Pediatr Res 61, 392-397 https://doi.org/10.1203/pdr.0b013e3180332cba
  76. West J, Harral J, Lane K et al (2008) Mice expressing BMPR2R899X transgene in smooth muscle develop pulmonary vascular lesions. Am J Physiol Lung Cell Mol Physiol 295, L744-755 https://doi.org/10.1152/ajplung.90255.2008
  77. Onishi T, Ishidou Y, Nagamine T et al (1998) Distinct and overlapping patterns of localization of bone morphogenetic protein (BMP) family members and a BMP type II receptor during fracture healing in rats. Bone 22, 605-612 https://doi.org/10.1016/S8756-3282(98)00056-8
  78. Lehnerdt G, Metz KA, Trellakis S, Jahnke K and Neumann A (2007) Signaling by way of type IB and II bone morphogenetic protein receptors regulates bone formation in otospongiosis. Laryngoscope 117, 812-816 https://doi.org/10.1097/MLG.0b013e31803300a2
  79. Garimella R, Kacena MA, Tague SE, Wang J, Horowitz MC and Anderson HC (2007) Expression of bone morphogenetic proteins and their receptors in the bone marrow megakaryocytes of GATA-1(low) mice: a possible role in osteosclerosis. J Histochem Cytochem 55, 745-752 https://doi.org/10.1369/jhc.6A7164.2007
  80. Yang C, Yang L, Wan M and Cao X (2010) Generation of a mouse model with expression of bone morphogenetic protein type II receptor lacking the cytoplasmic domain in osteoblasts. Ann N Y Acad Sci 1192, 286-291 https://doi.org/10.1111/j.1749-6632.2009.05248.x
  81. Katagiri T, Yamaguchi A, Komaki M et al (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127, 1755-1766 https://doi.org/10.1083/jcb.127.6.1755
  82. Hee CK and Nicoll S (2006) Induction of osteoblast differentiation markers in human dermal fibroblasts: potential application to bone tissue engineering. Conf Proc IEEE Eng Med Biol Soc 1, 521-524
  83. Davis RL, Weintraub H and Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987-1000 https://doi.org/10.1016/0092-8674(87)90585-X
  84. Wright WE, Sassoon DA and Lin VK (1989) Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56, 607-617 https://doi.org/10.1016/0092-8674(89)90583-7
  85. Edmondson DG and Olson EN (1990) A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev 4, 1450 https://doi.org/10.1101/gad.4.8.1450
  86. Olson EN (1990) MyoD family: a paradigm for development? Genes Dev 4, 1454-1461 https://doi.org/10.1101/gad.4.9.1454
  87. Katagiri T, Yamaguchi A, Ikeda T et al (1990) The nonosteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem Biophys Res Commun 172, 295-299 https://doi.org/10.1016/S0006-291X(05)80208-6
  88. Wu N, Zhao Y, Yin Y, Zhang Y and Luo J (2010) Identification and analysis of type II TGF-beta receptors in BMP-9-induced osteogenic differentiation of C3H10T1/2 mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 42, 699-708 https://doi.org/10.1093/abbs/gmq075
  89. Morrell NW (2010) Role of bone morphogenetic protein receptors in the development of pulmonary arterial hypertension. Adv Exp Med Biol 661, 251-264
  90. Yang J, Davies RJ, Southwood M et al (2008) Mutations in bone morphogenetic protein type II receptor cause dysregulation of Id gene expression in pulmonary artery smooth muscle cells: implications for familial pulmonary arterial hypertension. Circ Res 102, 1212-1221 https://doi.org/10.1161/CIRCRESAHA.108.173567
  91. Hamid R, Hedges LK, Austin E, Phillips JA 3rd, Loyd JE and Cogan JD (2010) Transcripts from a novel BMPR2 termination mutation escape nonsense mediated decay by downstream translation re-initiation: implications for treating pulmonary hypertension. Clin Genet 77, 280-286 https://doi.org/10.1111/j.1399-0004.2009.01311.x
  92. Ihida-Stansbury K, McKean DM, Lane KB et al (2006) Tenascin-C is induced by mutated BMP type II receptors in familial forms of pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 291, L694-702 https://doi.org/10.1152/ajplung.00119.2006
  93. Drake KM, Dunmore BJ, McNelly LN, Morrell NW and Aldred MA (2013) Correction of nonsense BMPR2 and SMAD9 mutations by ataluren in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 49, 403-409 https://doi.org/10.1165/rcmb.2013-0100OC
  94. Nasim MT, Ghouri A, Patel B et al (2008) Stoichiometric imbalance in the receptor complex contributes to dysfunctional BMPR-II mediated signalling in pulmonary arterial hypertension. Hum Mol Genet 17, 1683-1694 https://doi.org/10.1093/hmg/ddn059
  95. Howe JR, Bair JL, Sayed MG et al (2001) Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet 28, 184-187 https://doi.org/10.1038/88919
  96. Kim IY, Lee DH, Lee DK et al (2004) Loss of expression of bone morphogenetic protein receptor type II in human prostate cancer cells. Oncogene 23, 7651-7659 https://doi.org/10.1038/sj.onc.1207924
  97. Kodach LL, Wiercinska E, de Miranda NF et al (2008) The bone morphogenetic protein pathway is inactivated in the majority of sporadic colorectal cancers. Gastroenterology 134, 1332-1341 https://doi.org/10.1053/j.gastro.2008.02.059
  98. Schulz TJ and Tseng YH (2009) Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev 20, 523-531 https://doi.org/10.1016/j.cytogfr.2009.10.019

Cited by

  1. Profile of fibrosis-related gene transcripts and megakaryocytic changes in the bone marrow of myelodysplastic syndromes with fibrosis vol.97, pp.11, 2018, https://doi.org/10.1007/s00277-018-3411-9
  2. Ectopic osteogenesis effect of antigen-extracted xenogeneic cancellous bone graft with chitosan/rhBMP-2/bFGF sequential sustained-release nanocapsules vol.33, pp.1, 2018, https://doi.org/10.1177/0885328218761193
  3. Genetics in pulmonary arterial hypertension in a large homogeneous Japanese population vol.94, pp.1, 2018, https://doi.org/10.1111/cge.13154
  4. and their interactions with the risk of essential hypertension in the Chinese Han population vol.39, pp.1, 2019, https://doi.org/10.1042/BSR20181217