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REGULARIZED PENALTY METHOD FOR

NON-STATIONARY SET VALUED EQUILIBRIUM

PROBLEMS IN BANACH SPACES

Salahuddin

Abstract. In this research works, we consider the general regu-
larized penalty method for non-stationary set valued equilibrium
problem in a Banach space. We define weak coercivity conditions
and show that the weak and strong convergence problems of the
regularized penalty method.

1. Introduction

Regularized penalty methods give basic techniques for solutions of
various type of nonlinear problems via substitution of an initial problem
with a sequence of auxiliary problems with suitable assumptions. It is
well-known from the optimization theory that they are mutually dual
in the sense that the penalty method applied to the primal problem is
equivalent to the regularization method for its dual and vice versa; see,
e.g., [[21], Chap. X, §3]. In principle, they can be applied within a
unique algorithmic scheme for nonlinear constrained optimization, hi-
erarchical optimizations, cooperative games theories, Hadamard man-
ifolds, variational inequalities (VIs), and equilibrium problems (EPs);
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see, e.g., [1, 17, 18, 20, 22, 24, 27, 29, 30] and references therein. How-
ever, such a combined method usually requires restrictive concordance
rules for penalty and regularization parameters. Besides, many exist-
ing penalty and regularization methods applied to VIs and EPs are
based on (generalized) monotonicity conditions for convergence; see,
e.g., [1,8,9,19,23,26,30]. Rather recently, the convergence of regulariza-
tion methods was established under weak conditions that are sufficient
for existence of solutions of EPs instead of (generalized) monotonicity
assumptions in a finite-dimensional space setting; see [12, 14] and refer-
ences therein.
In this research works, we deal to the convergence analysis of the gen-
eral regularized penalty method for SVEPs in reflexive Banach space
without any monotonicity conditions and concordance rules for penalty
and regularization parameters. To this end, we first obtain an exis-
tence result for SVEPs, which can be viewed as a modification of those
in [1,9,25,26,28,30]. Then, we define coercivity conditions that provide
weak and strong convergence analysis of the regularized penalty method.

2. Preliminaries

We first recall some auxiliary properties. Let X be a nonempty subset
of a Banach space E. Recall that a function φ : X −→ R is said to be

(a) quasiconvex on a convex set K ⊆ X, iff
φ(αx+ (1− α)y) ≤ max{φ(x), φ(y)},∀x, y ∈ K and ∀α ∈ [0, 1];

(b) explicitly quasiconvex on a convex set K ⊆ X, iff it is quasiconvex
and it holds that
φ(αx+(1−α)y) < max{φ(x), φ(y)},∀x, y ∈ K with φ(x) 6= φ(y)
and ∀α ∈]0, 1[;

(c) convex on a convex set K ⊆ X, iff
φ(αx+(1−α)y) ≤ αφ(x)+(1−α)φ(y), ∀x, y ∈ K and ∀α ∈ [0, 1];

(d) strictly convex on a convex set K ⊆ X, iff
φ(αx+ (1− α)y) < αφ(x) + (1− α)φ(y),∀x, y ∈ K with x 6= y
and ∀α ∈]0, 1[;
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(e) uniformly convex on a convex set K ⊆ X, iff there exists a con-
tinuous and increasing function θ : R −→ R with θ(0) = 0 such
that
φ(αx+ (1− α)y) ≤ αφ(x) + (1− α)φ(y)
−α(1− α)θ(‖x− y‖),∀x, y ∈ K and ∀α ∈ [0, 1];

(f) strongly convex with constant κ > 0 on a convex set K ⊆ X, iff
φ(αx+ (1− α)y) ≤ αφ(x) + (1− α)φ(y)
−0.5κα(1− α)‖x− y‖2,∀x, y ∈ K and ∀α ∈ [0, 1].

Besides, we say that a function φ : X −→ R is
(g) coercive iff φ(x) −→ +∞ as ‖x‖ −→ ∞;

(h) weakly coercive with respect to a set K ⊆ E iff there exists a
number γ such that the set Kγ = {x ∈ K | φ(x) ≤ γ} is nonempty
and bounded.

Clearly, we have

(f)⇒ (e)⇒ (d)⇒ (c)⇒ (b)⇒ (a), and (e)⇒ (g)⇒ (h),

but converse is not true in general.
Let CB(X) be the family of all nonempty closed bounded subsets of X
and the Hausdorff metric defined by

H(A,B) = max{sup
x∈A

inf
y∈B

d(x, y) , sup
y∈B

inf
x∈A

d(x, y)}, ∀A,B ∈ CB(X).

A function φ : X −→ R is said to be upper (lower) semicontinuous at a
point z ∈ X, iff, for each sequence {xk} −→ z, xk ∈ X, it holds that

lim sup
k−→∞

φ(xk) ≤ φ(z) (lim inf
k−→∞

φ(xk) ≥ φ(z)).

Similarly, a function φ : X −→ R is said to be weakly upper (lower)

semicontinuous at a point z ∈ X, iff, for each sequence {xk} w−→ z, xk ∈
X, it holds that

lim sup
k−→∞

φ(xk) ≤ φ(z) (lim inf
k−→∞

φ(xk) ≥ φ(z)).

Here and below {xk} −→ z ({xk} w−→ z) denotes the strong (weak)
convergence of {xk} to z. We say that any of the above properties holds
on a set K ⊆ X, iff it holds at any point of K. Recall that a set X is
said to be
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(i) weakly sequentially closed, iff for each sequence {xk} w−→ z, xk ∈ X,
it holds that z ∈ X;

(ii) weakly sequentially compact, iff each sequence {xk} ⊂ X contains
a subsequence converging weakly to a point of X.

Next, we give the existence result for EPs on compact sets known as the
Ky Fan inequality; see [6].

Proposition 2.1. If X is a nonempty, convex, and compact subset
of a real topological vector space, F : X × X −→ R is an equilibrium
bi-function (i.e., F (x, x) = 0 for each x ∈ X), F (·, y) is upper semicon-
tinuous for each y ∈ X, and F (x, ·) is quasiconvex for each x ∈ X; then
there exists a point x∗ ∈ X such that

F (x∗, y) ≥ 0, ∀y ∈ X.

For deriving similar results on not necessarily compact sets, one needs
certain coercivity conditions.

3. Existence of Solutions

Let W be a nonempty set. Let φ : W ×W −→ R be a set valued
equilibrium bi-function and let G : W −→ Π(W ) be a set valued map-
ping where Π(W ) denotes the family of all nonempty subsets of a set
W . Then, we can define the following set valued equilibrium problems
(SVEPs): find a point x∗ ∈ W such that there exists g∗ ∈ G(x∗) and

(3.1) Φ(g∗, y) ≥ 0, ∀y ∈ W.

This formulation of SVEPs gives a suitable common format for investi-
gation of various nonlinear problems. In particular, it contains optimiza-
tion, fixed point, variational inequality, saddle point, and noncooperative
game equilibrium problems; see, e.g., [2, 5, 10, 11, 19, 25] and references
therein.
A set valued mapping G : X −→ Π(X) is said to be

(A1) upper semicontinuous on X if for each point z ∈ X and for each
open set U such that G(z) ⊂ U there is neighbourhood W of z
such that G(x) ⊆ U whenever x ∈ X ∩W ;

(A2) a K(Kakutani)-mapping on X if it is upper semicontinuous on X
and has nonempty convex and compact values.
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In this section, we will consider SVEPs (3.1) under the following basic
assumptions.
(B1) W is a nonempty, convex, and closed subset of a reflexive Banach
space E, Φ : W × W −→ R is an equilibrium bi-function, φ(·, y) is
weakly upper semicontinuous for each y ∈ W, and Φ(x, ·) is explicitly
quasiconvex for each x ∈ W and convex function G : X −→ Π(W ) is a
K-mapping.
By a simple specialization of Proposition 2.1, we obtain an existence
result for SVEPs (3.1) on bounded sets.

Proposition 3.1. If (A1)-(A2), (B1) holds and W is bounded, then
SVEPs (3.1) has a solution.

Now we turn to the unbounded case. Then, we should utilize a suit-
able coercivity condition; see, e.g., [4,5,12,14,15] and references therein.
We now modify one of the weakest conditions from [12, 14, 15]. For a
function µ : E −→ R and a number r, we define the level sets

Br = {x ∈ E | µ(x) ≤ r}

and

Lr = {x ∈ E | µ(x) < r}.
(C1) There exists a lower semicontinuous and convex function µ : E −→
R, which is weakly coercive with respect to the set W, and a number r,
such that, for any point x ∈ W\Br, there exists g ∈ G(x) with

inf Φ(g, µ, x) ≥ 0, for x ∈ W (µ, r),

then there is a point z ∈ W with

(3.2)
min{Φ(g, z), µ(z)− µ(x)} < 0,∀g ∈ G(x) and

max{Φ(g, z), µ(z)− µ(x)} ≤ 0,∀g ∈ G(x).

We recall that, for any lower semicontinuous and convex function µ :
E −→ R, its weak coercivity with respect to the set W is equivalent to
boundedness of any set Wρ = Bρ

⋂
W for each ρ. Set

r(m) = inf
x∈W

µ(x).

Lemma 3.2. If (B1) and (C1) hold, then there exists x̄ ∈ W such
that

µ(x̄) = r(m).
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Proof. The function µ is weakly lower semicontinuous; hence the set
Wρ is weakly sequentially compact. Moreover, there exists ρ′ such that
it is nonempty for all ρ ≥ ρ′. Due to the Weierstrass theorem, there
exists x̄ ∈ Wρ such that

r(m) = inf
x∈Wρ

µ(x) = µ(x̄).

We show that condition (C1) is well defined.

Lemma 3.3. If (A1)-(A2), (B1) and (C1) hold, then Wr is nonempty.

Proof. From Lemma 3.2, the set Wr(m) is nonempty, convex, closed,
and bounded. Applying Proposition 3.1 with W = Wr(m), we see that
there exists x̄ ∈ Wr(m) and ḡ ∈ G(x̄) such that

φ(ḡ, y) ≥ 0, ∀y ∈ Wr(m).

If Wr = φ, then r < r(m) and x̄ 6∈ Wr. Using now (3.2) with x = x̄
and noting that µ(x̄) ≤ µ(x) for every x ∈ W by definition, we obtain
µ(x̄) ≤ µ(z) in (C1), hence µ(x̄) = µ(z) and Φ(ḡ, z) < 0, for g ∈ G(x̄),
which is a contradiction.

Next basic property of solutions of SVEPs on reduced sets was given
in [12], Proposition 2.4 and [16], Proposition 3.2, but we give its proof
here for the convenience of the reader.

Proposition 3.4. Suppose that µ : E −→ R is a lower semicontin-
uous and convex function, (A1)-(A2), (B1) hold, and, for some ρ, there
exist xρ ∈ Wρ and gρ ∈ G(xρ) such that

(3.3) Φ(gρ, y) ≥ 0,∀y ∈ Wρ,

and w ∈ Lρ
⋂
W such that

Φ(gρ, w) ≤ 0, ∀gρ ∈ G(xρ).

Then, xρ is a solution of SVEPs (3.1).

Proof. Set φ(x) = Φ(gρ, x), for gρ ∈ G(xρ) then φ(xρ) = φ(w) = 0;
moreover, w ∈ Wρ, hence xρ and w are minimizers for the function
φ over Wρ. Suppose that there exists a point x′ ∈ W\Bρ such that
φ(x′) < φ(w), and set x(α) = αx′ + (1 − α)w. Clearly, x(α) ∈ W for
each α ∈]0, 1[. By convexity of µ, we have

µ[x(α)] ≤ αµ(x′) + (1− α)µ(w) = µ(w) + α[µ(x′)− µ(w)] ≤ ρ
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for α > 0 small enough. Then, x(α) ∈ Wρ for α > 0 small enough, but,
due to the explicit quasiconvexity of Φ(x, ·), we have

φ[x(α)] < max{φ(x′), φ(w)} = φ(w),

which is a contradiction. Therefore,

φ(xρ) = φ(w) ≤ φ(y),∀y ∈ W,
i.e., xρ solves SVEPs (3.1).

First we introduce the following approximation assumptions:

(i) there exists a sequence of nonempty convex closed set {Dρ} which
is Mosco convergent to the set D;

(ii) there exists a sequence of ρ-mappings Gρ : Dρ −→ Π(Dρ), ρ =
1, 2, · · · such that the relations {yρ} −→ ȳ, yρ ∈ Dρ and gρ ∈
Gρ(y

ρ) imply {gρ} is bounded and {gρ} −→ ḡ yields ȳ ∈ G(ȳ).

We are now ready to establish the general existence result.

Theorem 3.5. If (A1)-(A2), (B1) and (C1) are fulfilled, then SVEPs
(3.1) has a solution.

Proof. Since (C1) holds, we can take any ρ > r, then the set Wρ

is nonempty, convex, closed, and bounded. From Proposition 3.1, we
obtain that there exists a solution xρ and gρ ∈ G(xρ) of problem (3.3).
If xρ ∈ Lρ, we set w = xρ. Otherwise, we have µ(xρ) = ρ and xρ 6∈ Br.
From (C1) with x = xρ and g = gρ, it now follows that there exists a
point z ∈ W such that µ(z) < µ(xρ) = ρ and Φ(gρ, z) = 0 where for
gρ ∈ G(xρ), due to (3.2). Hence, we can set w = z. The result now
follows from Proposition 3.4.

This existence result appears to be suitable for application to penalty
methods.

4. Weak Convergence

In this section, we will consider SVEPs (3.1) under the following basic
assumptions.
(B2) W is a nonempty set of the form

(4.1) W = D
⋂

V,

where D and V are convex and closed sets in a reflexive Banach space
E and G : D −→ Π(D) is a set valued mapping, Φ(·, y) is weakly upper
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semicontinuous for each y ∈ D,Φ(x, ·) is convex for each x ∈ D, and
Φ : D ×D −→ R is an equilibrium bi-function.
In this partition, D stands for a ”simply” constrained set, whereas V
usually include ”functional” constraints. For this reason, we will utilize
a general penalty function P : E −→ R just for the set V , i.e.,

P (x) = 0, if x ∈ V and P (x) > 0, if x 6∈ V,

which is supposed to be convex and lower semicontinuous on D. Then

Φτ (g, y) = Φ(g, y) + τ [P (y)− P (x)], for g ∈ G(x),

determines the penalized bi-function on the set D.

Remark 4.1. In [ [13], Theorem 1], a convergence of the usual penalty
method for EPs was established in a finite-dimensional space setting
under the following coercivity condition.

There exists a convex function µ : Rn −→ R, which is weakly coercive
with respect to the set D and lower semicontinuous on D, and a number
r such that, for any point x ∈ D\Br, there is a point ỹ ∈ Lr

⋂
D such

that P (ỹ) ≤ P (x) and

Φ(x, ỹ) < 0.

Taking into account the result of Theorem 3.5, we conclude that all
the assertions of Theorem 1 of [13] remain true if we replace the above
condition with the following weaker one.
There exists a convex function µ : Rn −→ R, which is weakly coercive
with respect to the set D and lower semicontinuous on D, and a number
r such that, for any number τ > 0 and for any point x ∈ D\Br, there is
a point ỹ ∈ D such that µ(ỹ) ≤ µ(x) and

Φ(g, ỹ) + τ [P (ỹ)− P (x)] < 0, for g ∈ G(x)

where G : D −→ Π(D) is a set valued mapping.
The proof is obtained along the same lines as in [13].
However, we intend to apply the regularized penalty method. Together
with (B2) we consider the following coercivity condition.
(C2) There exists a lower semicontinuous and convex function µ : E −→
R, which is weakly coercive with respect to the set D, G : D −→ Π(D)
a set valued mapping, an equilibrium bi-function Ψ : D × D −→ R
such that Ψ(·, y) is weakly upper semicontinuous for each y ∈ D,Ψ(x, ·)
is convex for each x ∈ D and a number r such that, for any number
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τ > 0 and for any point x ∈ D\Br, there is a point z ∈ D such that
µ(z) ≤ µ(x) and

(4.2)
min{Φτ (g, z),Ψ(g, z)} < 0,∀g ∈ G(x) and

max{Φτ (g, z),Ψ(g, z)} ≤ 0, ∀g ∈ G(x).

We note that (C2) is a modification of condition (S2) in [15]. If we
choose

Ψ(x, y) = µ(y)− µ(x), ∀x, y ∈ D,
then (C2) modifies slightly condition (C1) for the penalized SVEPs.
Furthermore, we can take

Ψ(x, y) ≥ µ(y)− µ(x),∀x, y ∈ D,

then (4.2) implies µ(z) ≤ µ(x).
Given numbers τ > 0 and ε > 0, now we consider the perturbed problem
of finding a point x(τ, ε) ∈ D and g(τ, ε) ∈ G(x(τ, ε)) such that

(4.3) Φ(g(τ, ε), y) + τ [P (y)− P (x(τ, ε))] + εΨ(g(τ, ε), y) ≥ 0, ∀y ∈ D.

For brevity, set

Φτ,ε(g, y) = Φ(x, y) + τ [P (y)− P (x)] + εΨ(g, y),∀g ∈ G(x).

Our aim is to prove that the trajectory {x(τ, ε)} approximates a solution
of SVEPs (3.1),(4.1) as τ −→ +∞ and ε −→ 0. Again, for brevity, we
set xk = x(τk, εk). This means that the point xk is an arbitrary solution
of SVEPs (4.3) with τ = τk and ε = εk. The rules for choice of the
sequences {τk} and {εk} appear very simple.

Theorem 4.2. Suppose that (A1)-(A2), (B2) and (C2) are fulfilled,
the sequences {τk} and {εk} satisfy

(4.4) {τk} ↗ +∞, {εk} ↘ 0.

Then

(i) SVEPs (3.1), (4.1) has a solution;
(ii) SVEPs (4.3) has a solution for each pair τ > 0 and ε > 0 and all

these solutions belong to Br

⋂
D;

(iii) Each sequence {xk} of solutions of SVEPs (4.3) has weak limit
points, and all these weak limit points belong to Br

⋂
W and are

solutions of SVEPs (3.1), (4.1).
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Proof. We first show that, for any τ > 0 and ε > 0, (C1) is true with
Φ = Φτ,ε and W = D. Take any x ∈ D\Br, then there is z ∈ D,µ(z) ≤
µ(x) such that (4.2) holds and we have

Φτ,ε(g, z) = Φ(g, z) + τ [P (z)− P (x)] + εΨ(g, z) < 0.

Since Φτ,ε(·, y) is weakly upper semicontinuous for each y ∈ D, and
Φτ,ε(x, ·) is convex for each x ∈ D, SVEPs (4.3) has a solution for any
τ > 0 and ε > 0 due to Theorem 3.5 with Φ = Φτ,ε and W = D. It also
follows that x(τ, ε) ∈ Br

⋂
D. Hence, assertion (ii) is true. By (ii), the

sequence {xk} exists and is bounded. Therefore, it has weak limit points.
Since Br

⋂
D is convex and closed, and all these weak limit points must

belong to Br
⋂
D. Let x′ be an arbitrary weak limit point of {xk}, i.e.,

{xks} w−→ x′ and also {gks} w−→ g′. Then, by assumption,

0 ≤ P (xks) ≤ τ−1ks
Φ(gks , y)+P (y)+εksτ

−1
ks

Ψ(gks , y),∀y ∈ D, gks ∈ G(xks).

Taking y ∈ W and using (4.4), we obtain

0 ≤ P (x′) ≤ lim inf
s−→∞

P (xks) ≤ lim sup
s−→∞

[τ−1ks
Φ(gks , y) + εksτ

−1
ks

Ψ(gks , y)]

≤ lim sup
s−→∞

[τ−1ks
Φ(gks , y)] + lim sup

s−→∞
[εksτ

−1
ks

Ψ(gks , y)] ≤ 0, ∀gks ∈ G(xks)

i.e., x′ ∈ V and x′ ∈ W. This means that all the weak limit points of
{xk} belong to Br

⋂
W. It follows that

0 ≤ τksP (xks) ≤ Φ(gks , x′) + τksP (x′) + εksΨ(gks , x′)

= Φ(gks , x′) + εksΨ(gks , x′), ∀gks ∈ G(xks)

hence

0 ≤ lim inf
s−→∞

[τksP (xks)] ≤ lim sup
s−→∞

[τksP (xks)]

≤ lim sup
s−→∞

Φ(gks , x′) + lim sup
s−→∞

[εksΨ(gks , x′)] ≤ Φ(x′, x′) = 0.

Therefore,

lim
s−→∞

[τksP (xks)] = 0.

However, for each y ∈ W, for some gks ∈ G(xks), we have

Φ(gks , y)− τksP (xks) + εksΨ(gks , y)

= Φ(gks , y) + τks [P (y)− P (xks)] + εksΨ(gks , y) ≥ 0, ∀gks ∈ G(xks).
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By (A2) we suppose that {gks} −→ g′ without loss of generality, then
g′ ∈ G(x′). It follows that

Φ(g′, y) ≥ lim sup
s−→+∞

Φ(gks , y) ≥ lim inf
s−→+∞

[τksP (xks)] + lim inf
s−→+∞

[−εksΨ(gks , y)]

≥ lim
s−→+∞

[τksP (xks)]−lim sup
s−→+∞

[εksΨ(gks , y)] ≥ 0, ∀g′ ∈ G(x′), gks ∈ G(xks).

Therefore, x′ and g′ solve SVEPs (3.1), (4.1) and assertion (iii) is true.
Since x′ exists, assertion (i) is also true. The proof is complete.

It should be noted that SVEPs (3.1), (4.1) can have also solutions out
of Br under the conditions of Theorem 4.2; moreover, the solution set
may be unbounded in general.

5. Strong Convergence

Denote by W ∗ the solution set of SVEPs (3.1), (4.1) and set

r(n) = inf
x∈W ∗

µ(x)

and

W ∗
n = {x̄ ∈ W ∗ | µ(x̄) = r(n)}.

Note that the assumptions of Theorem 4.2 imply (C1) for SVEPs (4.3)
and the nonemptiness of Br

⋂
W ; see also Lemma 3.3. Now we dis-

cuss conditions for the nonemptiness of W ∗
n . First of all we note that

assumptions (B2) and (C2) imply the nonemptiness of W ∗; moreover,
W ∗ is weakly closed since Φ(·, y) is weakly upper semicontinuous. From
(B2) and (C2) we also obtain that Br

⋂
W is weakly sequentially com-

pact with r ≥ r(n) and so is Br

⋂
W ∗, which is also nonempty due to

Theorem 4.2 (iii). Since µ is weakly lower semicontinuous, it attains its
minimal value at Br

⋂
W ∗, hence W ∗

n 6= ∅. This assertion remains true if
(B2) holds, W ∗ 6= ∅, and µ is convex, lower semicontinuous, and weakly
coercive with respect to the set W. The choice of r in (C2) is rather
arbitrary. By fixing this parameter at r(n), we can attain the strong
convergence.

Theorem 5.1. Suppose that (A1)-(A2),(B2) and (C2) with r = r(n)
are fulfilled, the sequences {τk} and {εk} satisfy (4.4). Then

(i) SVEPs (4.3) has a solution for each pair τ > 0 and ε > 0 and all
these solutions belong to Br(n)

⋂
D;
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(ii) Each sequence {xk} and {gk} of solutions of SVEPs (4.3) has weak
limit points and all these weak limit points belong to W ∗

n , besides,

(5.1) lim
k−→+∞

µ(xk) = r(n);

(iii) If, additionally, W ∗ is convex and µ is strictly convex, the sequence
{xk} converges weakly to a point z∗n such that W ∗

n = {z∗n}.

Proof. Assertion (i) follows from Theorem 4.2 (ii). Besides, from The-
orem 4.2 (iii) we obtain that all the weak limit points of {xk} belong to
W ∗
n . It now follows from properties of µ that

r(n) ≤ lim inf
k−→∞

µ(xk) ≤ lim sup
k−→∞

µ(xk) ≤ r(n),

i.e., (5.1) holds true. Next, in case (iii), W ∗
n must be a singleton {z∗n}

that implies weak convergence of {xk} −→ z∗n. Similarly, {gk} −→ g∗n
with g∗n ∈ G(z∗n).

Assertions (ii) and (iii) of Theorem 5.1 remain true when there exists
a number τ ′ > 0 such that (C2) holds if 0 < τ < τ ′ and (C2) with
r = r(n) holds if τ ≥ τ ′. In order to derive strong convergence, we im-
pose additional conditions on µ and rewrite the modified condition (C2)
for convenience of the reader.
(C2′) There exist set valued mapping G : D −→ Π(D) and an equilib-
rium bi-function Ψ : D × D −→ R such that Ψ(·, y) is weakly upper
semicontinuous for each y ∈ D,Ψ(x, ·) is convex for each x ∈ D and a
lower semicontinuous and uniformly convex function µ : E −→ R, such
that, for any number τ > 0 and for any point x ∈ D\Br(n), there is a
point z ∈ D such that µ(z) ≤ µ(x) and (4.2) holds true.

Remark 5.2. The condition (C2′) is weaker essentially than the usual
(generalized) monotonicity assumptions used for providing strong con-
vergence of existing regularization and regularized penalty methods; see,
e.g., [1,3,7,8]. To see this, let us consider a simplified version of (C2′) ap-
plied for the pure regularization method. Then, we suppose that V = E
and P (x) ≡ 0. Moreover, we set Ψ(x, y) = µ(y) − µ(x) for simplicity.
This gives the following coercivity condition.

There exists a lower semicontinuous and uniformly convex function
µ : E −→ R such that, for any point x ∈ W\Br(n), there is a point
z ∈ D such that (3.3) holds.
At the same time, the weakest known sufficient condition was W ∗ =
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W e 6= ∅, where W e is the solution set of the minimax dual SVEPs: find
y∗ ∈ W such that

Φ(g, y∗) ≤ 0, ∀x ∈ W, g ∈ G(x).

It holds if W ∗ 6= ∅ and Φ is pseudomonotone. Clearly, they imply the
above coercivity condition. In the proof we utilize partially the technique
from [ [30], Chap. IV, 4, Lemma 2], which was applied to optimization
problems. For a point x and a set X, we define the distance value

d(x,X) = inf
y∈X
‖x− y‖.

Theorem 5.3. Suppose that (A1)-(A2), (B2) and (C2′) are fulfilled,
the sequences {τk} and {εk} satisfy (4.4). Then

(i) SVEPs (4.3) has a solution for each pair τ > 0 and ε > 0 and all
these solutions belong to Br(n)

⋂
D;

(ii) Each sequence {xk} of solutions of SVEPs (4.3) has strong limit
points and all these limit points belong to W ∗

n , besides, (5.1) holds
and

(5.2) lim
k−→+∞

d(xk,W ∗
n) = 0;

(iii) If, additionally, W ∗ is convex, the sequence {xk} converges strongly
to a point z∗n such that W ∗

n = {z∗n};
(iv) If, additionally, W ∗ is convex, the sequence {gk} converges strongly

to a point g∗n such that W ∗
n = {g∗n} and g∗n ∈ G(z∗n).

Proof. Assertion (i) again follows from Theorem 4.2 (ii). Besides,
from Theorem 5.1 (ii) we obtain that the sequence {xk} has weak limit
points and all the weak limit points of {xk} belong to W ∗

n and that
(5.2) holds. Take an arbitrary subsequence {xks}, without any loss of

generality suppose that {xks} w−→ z̄ ∈ W ∗
n . By the uniform convexity of

µ we have

1

4
θ(‖xks − z̄‖) ≤ 1

2
µ(xks) +

1

2
µ(z̄)− µ((xks + z̄)/2).

Setting wks = (xks + z̄)/2, we note that {wks} w−→ z̄. Hence,

lim inf
s−→∞

µ(wks) ≥ µ(z̄) = r(n),

and

0 ≤ 1

4
lim inf
s−→∞

θ(‖xks − z̄‖) ≤ 1

4
lim sup
s−→∞

θ(‖xks − z̄‖)
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≤ 1

2
lim
s−→∞

[µ(xks) + r(n)]− r(n) = 0.

This yields

lim
s−→∞

θ(‖xks − z̄‖) = 0

and

lim
s−→∞

‖xks − z̄‖ = 0.

Therefore, the subsequence {xks} converges strongly to z̄ ∈ W ∗
n . So, the

sequence {xk} has strong limit points and all these limit points belong
to W ∗

n . Next,

0 ≤ lim inf
k−→∞

d(xk,W ∗
n) ≤ lim sup

k−→∞
d(xk,W ∗

n) = lim
s−→∞

d(xks ,W ∗
n)

for some subsequence {xks}. However, without any loss of generality we
can suppose that {xks} −→ z̄ ∈ W ∗

n , then

lim
s−→∞

d(xks ,W ∗
n) ≤ lim

s−→∞
‖xks − z̄‖ = 0,

Again, since the sequence {gks} belong to W ∗
n and

0 ≤ lim inf
k−→∞

d(gk,W ∗
n) ≤ lim sup

k−→∞
d(gk,W ∗

n) = lim
s−→∞

d(gks ,W ∗
n)

for some subsequence {gks}. However, without any loss of generality, we
can suppose that {gks} −→ ḡ and ḡ ∈ G(z̄) ∈ W ∗

n , then

lim
s−→∞

d(g, ḡ) ≤ lim
s−→∞

{‖g − gks‖+ d(gks , G(z̄))}

≤ lim
s−→∞

{‖g − gks‖+ H(G(xks), G(z̄))}

≤ lim
s−→∞

{‖g − gks‖+ ξ‖xks − z̄‖} −→ 0,

where g ∈ G(z), H(·, ·) is a Hausdorff metric and ξ > 0 is a constant,
i.e., (5.2) holds and part (ii) is true. Next, in case (iii), W ∗

n must be a
singleton {z∗n} as in Theorem 5.1. This implies the strong convergence
of {xk} −→ z∗n and {gks} −→ g∗n where g∗n ∈ G(z∗n).

It should be noted that assertions (ii) and (iii) of Theorem 5.3 remain
true when there exists a number τ ′ > 0 such that (C2) holds if 0 < τ < τ ′

and (C2′) holds if τ ≥ τ ′.
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6. Conclusions

We considered a general regularized penalty method for set valued
equilibrium problems in reflexive Banach space without monotonicity
assumptions and concordance rule for penalty and regularization pa-
rameters. We suggest new coercivity conditions that provide weak and
strong convergence properties of the methods.
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