References
- Sethu, V., Ambikairajah, E., & Epps, J. (2007). Speaker normalisation for speech-based emotion detection. Proceedings of Digital Signal Processing (pp. 611-614).
- Ko, T., Peddinti, V., Povey, D., & Khudanpur, S. (2015). Audio Augmentation for Speech Recognition. Proceedings of INTERSPEECH (pp. 3586-3589).
- Chiou, B. C., & Chen, C. P. (2014). Speech Emotion Recognition with Cross-lingual Databases. Proceedings of INTERSPEECH (pp. 558-561).
- Kwon, C., Song, S., Kim, J., Kim, K., & Jang, J. (2012). Extraction of Speech Features for Emotion Recognition. Phonetics and Speech Sciences, 4(2), 73-78. (권철홍.송승규.김종열.김근호.장준수 (2012). 감정 인식을 위한 음성 특징 도출. 말소리와 음성과학, 4(2), 73-78.) https://doi.org/10.13064/KSSS.2012.4.2.073
- Han, K., Yu, D., & Tashev, I. (2014). Speech Emotion Recognition Using Deep Neural Network and Extreme Learning Machine. Proceedings of INTERSPEECH (pp. 223-227).
- Eyben, F., Wollmer, M., & Schuller, B. (2009). OpenEAR- Introducing the Munich Open-Source Emotion and Affect Recognition Toolkit. Proceedings of the Affective Computing and Intelligent Interaction (pp. 1-6).
- Schuller, B., Steidl, S., & Batliner, A. (2009). The INTERSPEECH 2009 Emotion Challenge. Proceedings of INTERSPEECH (pp. 312-315).
- Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018
- Verhelst, W., & Roelands, M. (1993). An overlap-add technique based on waveform similarity (WSOLA) for high quality time-scale modification of speech. Proceedings of International Conference Acoustics, Speech, and Signal Processing (pp. 554-557).
- Bagwell, C., & Klauer, U. (2015). SoX - sound exchange. Retrieved from http://sox.sourceforge.net/ on November 25, 2016.
- Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W. F., & Weiss, B. (2005). A Database of German Emotional Speech. Proceedings of INTERSPEECH (pp. 1517-1520).
- Jang, K., & Kwon, O. (2006). Speech Emotion Recognition for Affective Human-Robot Interaction. Proceedings of International Conference on Speech and Computer (pp. 419-422).
- Martin, O., Kotsia, I., Macq, B., & Pitas, I. (2006). The eNTERFACE'05 Audio-Visual Emotion Database. Proceedings of International Conference Data Engineering Workshops (pp. 1-8).
- Lee, J., & Tashev, I. (2015). High-level Feature Representation using Recurrent Neural Network for Speech Emotion Recognition. Proceedings of INTERSPEECH (pp. 1537-1540).
- Jin, Q., Li, C., Chen, S., & Wu, H. (2015). Speech emotion recognition with acoustic and lexical features. Proceedings of International Conference Acoustics, Speech, and Signal Processing (pp. 4749-4753).
- Powers, D. M. (2011). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. Journal of Machine Learning Technologies, 2(1), 37-63.
- Van der Maaten, L. (2014). Accelerating t-SNE using Tree-Based Algorithms. Journal of Machine Learning Research, 15(1), 3221-3245.