DOI QR코드

DOI QR Code

Protective effect of ginsenosides Rk3 and Rh4 on cisplatin-induced acute kidney injury in vitro and in vivo

  • 투고 : 2015.09.03
  • 심사 : 2016.03.29
  • 발행 : 2017.07.15

초록

Background: Nephrotoxicity is the major side effect in cisplatin chemotherapy. Previously, we reported that the ginsenosides Rk3 and Rh4 reduced cisplatin toxicity on porcine renal proximal epithelial tubular cells (LLC-PK1). Here, we aimed to evaluate the protective effect of ginsenosides Rk3 and Rh4 on kidney function and elucidate their antioxidant effect using in vitro and in vivo models of cisplatin-induced acute renal failure. Methods: An enriched mixture of ginsenosides Rk3 and Rh4 (KG-KH; 49.3% and 43.1%, respectively) was purified from sun ginseng (heat processed Panax ginseng). Cytotoxicity was induced by treatment of $20{\mu}M$ cisplatin to LLC-PK1 cells and rat model of acute renal failure was generated by single intraperitoneal injection of 5 mg/kg cisplatin. Protective effects were assessed by determining cell viability, reactive oxygen species generation, blood urea nitrogen, serum creatinine, antioxidant enzyme activity, and histopathological examination. Results: The in vitro assay demonstrated that KG-KH ($50{\mu}g/mL$) significantly increased cell viability (4.6-fold), superoxide dismutase activity (2.8-fold), and glutathione reductase activity (1.5-fold), but reduced reactive oxygen species generation (56%) compared to cisplatin control cells. KG-KH (6 mg/kg, per os) also significantly inhibited renal edema (87% kidney index) and dysfunction (71.4% blood urea nitrogen, 67.4% creatinine) compared to cisplatin control rats. Of note, KG-KH significantly recovered the kidney levels of catalase (1.2-fold) and superoxide dismutase (1.5-fold). Conclusion: Considering the oxidative injury as an early trigger of cisplatin nephrotoxicity, our findings suggest that ginsenosides Rk3 and Rh4 protect the kidney from cisplatin-induced oxidative injury and help to recover renal function by restoring intrinsic antioxidant defenses.

키워드

참고문헌

  1. Lebwohl D, Canetta R. Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur J Cancer 1998;34:1522-34. https://doi.org/10.1016/S0959-8049(98)00224-X
  2. Arany I, Safirstein RL. Cisplatin nephrotoxicity. Semin Nephrol 2003;23:460-4. https://doi.org/10.1016/S0270-9295(03)00089-5
  3. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 2008;73:994-1007. https://doi.org/10.1038/sj.ki.5002786
  4. Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 2005;4:307-20. https://doi.org/10.1038/nrd1691
  5. Karasawa T, Steyger PS. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett 2015;237:219-27. https://doi.org/10.1016/j.toxlet.2015.06.012
  6. Ishida S, Lee J, Thiele DJ, Herskowitz I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA 2002;99:14298-302. https://doi.org/10.1073/pnas.162491399
  7. Kuo YM, Gybina AA, Pyatskowit JW, Gitschier J, Prohaska JR. Copper transport protein (Ctr1) levels in mice are tissue specific and dependent on copper status. J Nutr 2006;136:21-6. https://doi.org/10.1093/jn/136.1.21
  8. Ludwig T, Riethmuller C, Gekle M, Schwerdt G, Oberleithner H. Nephrotoxicity of platinum complexes is related to basolateral organic cation transport. Kidney Int 2004;66:196-202. https://doi.org/10.1111/j.1523-1755.2004.00720.x
  9. Yonezawa A, Masuda S, Nishihara K, Yano I, Katsura T, Inui K. Association between tubular toxicity of cisplatin and expression of organic cation transporter rOCT2 (Slc22a2) in the rat. Biochem Pharmacol 2005;70:1823-31. https://doi.org/10.1016/j.bcp.2005.09.020
  10. TownsendDM,DengM, Zhang L, LapusMG, HaniganMH.Metabolismof cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol 2003;14:1-10. https://doi.org/10.1097/01.ASN.0000042803.28024.92
  11. Townsend DM, Marto JA, Deng M, Macdonald TJ, Hanigan MH. High pressure liquid chromatography and mass spectrometry characterization of the nephrotoxic biotransformation products of cisplatin. Drug Metab Dispos 2003;31:705-13. https://doi.org/10.1124/dmd.31.6.705
  12. Zhang L, Hanigan MH. Role of cysteine S-conjugate beta-lyase in the metabolism of cisplatin. J Pharmacol Exp Ther 2003;306:988-94. https://doi.org/10.1124/jpet.103.052225
  13. Taguchi T, Nazneen A, Abid MR, Razzaque MS. Cisplatin-associated nephrotoxicity and pathological events. Contrib Nephrol 2005;148:107-21.
  14. Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol 2009;61:223-42. https://doi.org/10.1016/j.etp.2008.09.003
  15. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008;29:1109-18. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  16. Ernst E. Panax ginseng: an overview of the clinical evidence. J Ginseng Res 2010;34:259-63. https://doi.org/10.5142/jgr.2010.34.4.259
  17. Kiefer D. Pantuso T. Panax ginseng. Am Fam Physician 2003;68:1539-42.
  18. Park HJ, Kim DH, Park SJ, Kim JM, Ryu JH. Ginseng in traditional herbal prescriptions. J Ginseng Res 2012;36:225-41. https://doi.org/10.5142/jgr.2012.36.3.225
  19. Baek SH, Bae ON, Park JH. Recent methodology in ginseng analysis. J Ginseng Res 2012;36:119-34. https://doi.org/10.5142/jgr.2012.36.2.119
  20. Helms S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev 2004;9:259-74.
  21. Radad K, Gille G, Liu L, Rausch WD. Use of ginseng in medicine with emphasis on neurodegenerative disorders. J Pharmacol Sci 2006;100:175-86. https://doi.org/10.1254/jphs.CRJ05010X
  22. Cho IH. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 2012;36:342-53. https://doi.org/10.5142/jgr.2012.36.4.342
  23. Qi LW, Wang CZ, Yuan CS. American ginseng: potential structure-function relationship in cancer chemoprevention. Biochem Pharmacol 2010;80:947-54. https://doi.org/10.1016/j.bcp.2010.06.023
  24. Kwon SW, Han SB, Park IH, Kim JM, Park MK, Park JH. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J Chromatogr A 2001;921:335-9. https://doi.org/10.1016/S0021-9673(01)00869-X
  25. Park IH, Han SB, Kim JM, Piao L, Kwon SW, Kim NY, Kang TL, Park MK, Park JH. Four new acetylated ginsenosides from processed ginseng (sun ginseng). Arch Pharm Res 2002;25:837-41. https://doi.org/10.1007/BF02977001
  26. Park IH, Kim NY, Han SB, Kim JM, Kwon SW, Kim HJ, Park MK, Park JH. Three new dammarane glycosides from heat processed ginseng. Arch Pharm Res 2002;25:428-32. https://doi.org/10.1007/BF02976595
  27. Im W, Chung JY, Bhan J, Lim J, Lee ST, Chu K, Kim M. Sun ginseng protects endothelial progenitor cells from senescence associated apoptosis. J Ginseng Res 2012;36:78-85. https://doi.org/10.5142/jgr.2012.36.1.78
  28. Kim EJ, Oh HA, Choi HJ, Park JH, Kim DH, Kim NJ. Heat-processed ginseng saponin ameliorates the adenine-induced renal failure in rats. J Ginseng Res 2013;37:87-93. https://doi.org/10.5142/jgr.2013.37.87
  29. Lee CH, Kim JM, Kim DH, Park SJ, Liu X, Cai M, Hong JG, Park JH, Ryu JH. Effects of sun ginseng on memory enhancement and hippocampal neurogenesis. Phytother Res 2013;27:1293-9. https://doi.org/10.1002/ptr.4873
  30. Baek SH, Piao XL, Lee UJ, Kim HY, Park JH. Reduction of cisplatin-induced nephrotoxicity by ginsenosides isolated from processed ginseng in cultured renal tubular cells. Biol Pharm Bull 2006;29:2051-5. https://doi.org/10.1248/bpb.29.2051
  31. Kim YH, Kim YW, Oh YJ, Back NI, Chung SA, Chung HG, Jeong TS, Choi MS, Lee KT. Protective effect of the ethanol extract of the roots of Brassica rapa on cisplatin-induced nephrotoxicity in LLC-PK1 cells and rats. Biol Pharm Bull 2006;29:2436-41. https://doi.org/10.1248/bpb.29.2436
  32. Humanes B, Lazaro A, Camano S, Moreno-Gordaliza E, Lazaro JA, Blanco-Codesido M, Lara JM, Ortiz A, Gomez-Gomez MM, Martin-Vasallo P, et al. Cilastatin protects against cisplatin-induced nephrotoxicity without compromising its anticancer efficiency in rats. Kidney Int 2012;82:652-63. https://doi.org/10.1038/ki.2012.199
  33. Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet 2012;380:756-66. https://doi.org/10.1016/S0140-6736(11)61454-2
  34. Zsengeller ZK, Ellezian L, Brown D, Horvath B, Mukhopadhyay P, Kalyanaraman B, Parikh SM, Karumanchi SA, Stillman IE, Pacher P. Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity. J Histochem Cytochem 2012;60:521-9. https://doi.org/10.1369/0022155412446227
  35. Sanchez-Gonzalez PD, Lopez-Hernandez FJ, Perez-Barriocanal F, Morales AI, Lopez-Novoa JM. Quercetin reduces cisplatin nephrotoxicity in rats without compromising its anti-tumour activity. Nephrol Dial Transplant 2011;26:3484-95. https://doi.org/10.1093/ndt/gfr195
  36. Lopez MV, Cuadrado MP, Ruiz-Poveda OM, Del Fresno AM, Accame ME. Neuroprotective effect of individual ginsenosides on astrocytes primary culture. Biochim Biophys Acta 2007;1770:1308-16. https://doi.org/10.1016/j.bbagen.2007.06.008
  37. Shen L, Han JZ, Li C, Yue SJ, Liu Y, Qin XQ, Liu HJ, Luo ZQ. Protective effect of ginsenoside Rg1 on glutamate-induced lung injury. Acta Pharmacol Sin 2007;28:392-7. https://doi.org/10.1111/j.1745-7254.2007.00511.x
  38. Zhang MH, Fan JM, Xie XS, Deng YY, Chen YP, Zhen R, Li J, Cheng Y, Wen J. Ginsenoside-Rg1 protects podocytes from complement mediated injury. J Ethnopharmacol 2011;137:99-107. https://doi.org/10.1016/j.jep.2011.04.045
  39. Zhou XM, Cao YL, Dou DQ. Protective effect of ginsenoside-Re against cerebral ischemia/reperfusion damage in rats. Biol Pharm Bull 2006;29:2502-5. https://doi.org/10.1248/bpb.29.2502
  40. Park JY, Choi P, Kim T, Ko H, Kim HK, Kang KS, Ham J. Protective effects of processed ginseng and its active ginsenosides on cisplatin-induced nephrotoxicity: in vitro and in vivo studies. J Agric Food Chem 2015;63:5964-9. https://doi.org/10.1021/acs.jafc.5b00782

피인용 문헌

  1. Anti-anemia effects of ginsenoside Rk3 and ginsenoside Rh4 on mice with ribavirin-induced anemia vol.9, pp.4, 2018, https://doi.org/10.1039/c8fo00368h
  2. Total Synthesis and Biological Evaluation of Sericetin for Protection against Cisplatin-Induced Acute Kidney Injury vol.81, pp.12, 2017, https://doi.org/10.1021/acs.jnatprod.8b00434
  3. Protective Role of Natural Products in Cisplatin-Induced Nephrotoxicity vol.19, pp.14, 2019, https://doi.org/10.2174/1389557519666190320124438
  4. Ginsenoside Rk3 ameliorates high-fat-diet/streptozocin induced type 2 diabetes mellitus in mice via the AMPK/Akt signaling pathway vol.10, pp.5, 2019, https://doi.org/10.1039/c9fo00095j
  5. Possible protective effect of platelet‐rich plasma on a model of cisplatin‐induced nephrotoxicity in rats: A light and transmission electron microscopic study vol.234, pp.7, 2017, https://doi.org/10.1002/jcp.27706
  6. Catalpol-Induced AMPK Activation Alleviates Cisplatin-Induced Nephrotoxicity through the Mitochondrial-Dependent Pathway without Compromising Its Anticancer Properties vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/7467156
  7. Endoplasmic Reticulum Stress-Activated PERK-eIF2α-ATF4 Signaling Pathway is Involved in the Ameliorative Effects of Ginseng Polysaccharides against Cisplatin-Induced Nephrotoxicity in Mice vol.6, pp.13, 2017, https://doi.org/10.1021/acsomega.0c06339