DOI QR코드

DOI QR Code

Numerical Study About Compression Effect of Porous Electrodes on the Performance of Redox Flow Batteries

다공성 전극의 압축률이 레독스흐름전지의 성능에 미치는 영향에 대한 수치해석적 연구

  • Received : 2017.02.10
  • Accepted : 2017.04.02
  • Published : 2017.06.30

Abstract

When designing a redox flow battery system, compression of battery stack is required to prevent leakage of electrolyte and to reduce contact resistance between cell components. In addition, stack compression leads to deformation of the porous carbon electrode, which results in lower porosity and smaller cross-sectional area for electrolyte flow. In this paper, we investigate the effects of electrode compression on the cell performance by applying multi-dimensional, transient model of all-vanadium redox flow battery (VRFB). Simulation result reveals that large compression leads to greater pressure drop throughout the electrodes, which requires large pumping power to circulate electrolyte while lowered ohmic resistance results in better power capability of the battery. Also, cell compression results in imbalance between anolyte and catholyte and convective crossover of vanadium ions through the separator due to large pressure difference between negative and positive electrodes. Although it is predicted that the battery power is quickly improved due to the reduced ohmic resistance, the capacity decay of the battery is accelerated in the long term operation when the battery cell is compressed. Therefore, it is important to optimize the battery performance by taking trade-off between power and capacity when designing VRFB system.

Keywords

References

  1. C. Ponce de Leon, A. Frias-Ferrer, J. Gonzalez-Garcia, D. A. Szanto and F. C. Walsh, "Redox flow cells for energy conversion", J. Power Sources, Vol. 160, 2006, pp. 716-732. https://doi.org/10.1016/j.jpowsour.2006.02.095
  2. A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick and Q Liu, "Redox flow batteries: a review", J. Appl. Electrochem., Vol. 41, 2011, pp. 1137-1164. https://doi.org/10.1007/s10800-011-0348-2
  3. Q. Xu and T. S. Zhao, "Fundamental models for flow batteries", Progress in Energy and Combustion Science, Vol. 49, 2015, pp. 40-58. https://doi.org/10.1016/j.pecs.2015.02.001
  4. A. Tang, J. Bao and M. Skyllas-Kazacos, "Studies on pressure losses and flow rate optimization in vanadium redox flow battery", J. Power Sources, Vol. 248, 2014, pp. 154-162. https://doi.org/10.1016/j.jpowsour.2013.09.071
  5. E. Agar, A. Benjamin, C. R. Dennison, D. Chen, M. A. Hickner and E. C. Kumbur, "Reducing capacity fade in vanadium redox flow batteries by altering charging and discharging currents", J. Power Sources, Vol. 246, 2014, pp. 767-774. https://doi.org/10.1016/j.jpowsour.2013.08.023
  6. L. Li, S. Kim, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff and Z. Yang, "A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage", Adv. Energy Matter, Vol. 1, 2011, pp. 394-400. https://doi.org/10.1002/aenm.201100008
  7. S. Won, K. Oh and H. Ju, "Numerical studies of carbon paper-based vanadium redox flow batteries", Electrochimica Acta, Vol. 201, 2016, pp. 286-299. https://doi.org/10.1016/j.electacta.2015.11.091
  8. C. Yin, S. Guo, H. Fang, J. Liu and H. Tang, "Numerical and experimental studies of stack shunt current for vanadium redox flow battery", Applied Energy, Vol. 151, 2015, pp. 237-248. https://doi.org/10.1016/j.apenergy.2015.04.080
  9. P. Zhao, H. Zhang, H. Zhou, J. Chen, S. Gao and B. Yi, "Characteristics and performance of 10kW class all-vanadium redox-flow battery stack", J. Power Sources, Vol. 162, 2006, pp. 1416-1420. https://doi.org/10.1016/j.jpowsour.2006.08.016
  10. A. A. Shah, M. J. Watt-Smith and F. C. Walsh, "A dynamic performance model for redox-flow batteries involving soluble species", Electrochimica Acta, Vol. 53, 2008, pp. 8087-8100. https://doi.org/10.1016/j.electacta.2008.05.067
  11. K. Oh, H. Yoo, J. Ko, S. Won and H. Ju, "Three-dimensional, transient, nonisothermal model of all-vanadium redox flow batteries", Energy, Vol. 81, 2015, pp. 3-14. https://doi.org/10.1016/j.energy.2014.05.020
  12. K. W. Knehr, E. Agar, C. R. Dennison, A. R. Kalidindi and E. C. Kumbur, "A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and Water Transport through the Membrane", J. Electrochemical Society, Vol. 159, No. 9, 2012, pp. A1446-A1459. https://doi.org/10.1149/2.017209jes
  13. Q. Xu, T. S. Zhao and C. Zhang, "Effects of SOCdependent electrolyte viscosity on performance of vanadium redox flow batteries", Applied Energy, Vol. 130, 2014, pp. 139-147. https://doi.org/10.1016/j.apenergy.2014.05.034
  14. H. Liu, Q. Xu, C. Yan and Y. Qiao, "Corrosion behavior of a positive graphite electrode in vanadium redox flow battery", Electrochimica Acta, Vol. 56, 2011, pp. 8783-8790. https://doi.org/10.1016/j.electacta.2011.07.083
  15. C. Sun, F. M. Delnick, L. Baggetto and G. M. Veith, "Hydrogen evolution at the negative eletrode of the all-vanadium redox flow batteries", J. Power Sources, Vol. 248, 2014, pp. 560-564. https://doi.org/10.1016/j.jpowsour.2013.09.125
  16. T. Chang, J. Zhang, and Y. Fuh, "Electrical, mechanical and morphological properties of compressed carbon felt electrodes in vanadium redox flow battery", J. Power Sources, Vol. 245, 2014, pp. 66-75. https://doi.org/10.1016/j.jpowsour.2013.06.018
  17. S. Park, J. Shim, J. H. Yang, C. J, B. S. Lee, Y. Lee, K. Shin, and J. Jeon, "The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery", Electrochimica Acta, Vol. 116, 2015, pp. 447-452.
  18. K. Oh, S. Won and H. Ju, "Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries", Electrochimica Acta, Vol. 181, 2015, pp. 13-23. https://doi.org/10.1016/j.electacta.2015.02.212