DOI QR코드

DOI QR Code

Highly Time-Resolved Metabolic Reprogramming toward Differential Levels of Phosphate in Chlamydomonas reinhardtii

  • Jang, Cheol-Ho (Depatment of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University) ;
  • Lee, Gayeon (Depatment of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University) ;
  • Park, Yong-Cheol (Depatment of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University) ;
  • Kim, Kyoung Heon (Depatment of Biotechnology, Graduate School, Korea University) ;
  • Lee, Do Yup (Depatment of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University)
  • Received : 2017.01.24
  • Accepted : 2017.03.30
  • Published : 2017.06.28

Abstract

Understanding phosphorus metabolism in photosynthetic organisms is important as it is closely associated with enhanced crop productivity and pollution management for natural ecosystems (e.g., algal blooming). Accordingly, we exploited highly time-resolved metabolic responses to different levels of phosphate deprivation in Chlamydomonas reinhardtii, a photosynthetic model organism. We conducted non-targeted primary metabolite profiling using gas-chromatography time-of-flight mass spectrometric analysis. Primarily, we systematically identified main contributors to degree-wise responses corresponding to the levels of phosphate deprivation. Additionally, we systematically characterized the metabolite sets specific to different phosphate conditions and their interactions with culture time. Among them were various types of fatty acids that were most dynamically modulated by the phosphate availability and culture time in addition to phosphorylated compounds.

Keywords

References

  1. Calderon-Vazquez C, Sawers RJ, Herrera-Estrella L. 2011. Phosphate deprivation in maize: genetics and genomics. Plant Physiol. 156: 1067-1077. https://doi.org/10.1104/pp.111.174987
  2. Moseley JL, Gonzalez-Ballester D, Pootakham W, Bailey S, Grossman AR. 2009. Genetic interactions between regulators of Chlamydomonas phosphorus and sulfur deprivation responses. Genetics 181: 889-905. https://doi.org/10.1534/genetics.108.099382
  3. Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng XW. 2003. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol. 132: 1260-1271. https://doi.org/10.1104/pp.103.021022
  4. Yehudai-Resheff S, Zimmer SL, Komine Y, Stern DB. 2007. Integration of chloroplast nucleic acid metabolism into the phosphate deprivation response in Chlamydomonas reinhardtii. Plant Cell 19: 1023-1038. https://doi.org/10.1105/tpc.106.045427
  5. Hammond JP, Broadley MR, White PJ. 2004. Genetic responses to phosphorus deficiency. Ann. Bot. 94: 323-332. https://doi.org/10.1093/aob/mch156
  6. Wykoff DD, Grossman AR, Weeks DP, Usuda H, Shimogawara K. 1999. Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc. Natl. Acad. Sci. USA 96: 15336-15341. https://doi.org/10.1073/pnas.96.26.15336
  7. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, et al. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245-250. https://doi.org/10.1126/science.1143609
  8. Aksoy M, Pootakham W, Grossman AR. 2014. Critical function of a Chlamydomonas reinhardtii putative polyphosphate polymerase subunit during nutrient deprivation. Plant Cell 26: 4214-4229. https://doi.org/10.1105/tpc.114.129270
  9. Miller R, Wu G, Deshpande RR, Vieler A, Gartner K, Li X, et al. 2010. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol. 154: 1737-1752. https://doi.org/10.1104/pp.110.165159
  10. Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, et al. 2012. Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J. Biol. Chem. 287: 15811-15825. https://doi.org/10.1074/jbc.M111.334052
  11. Blaby IK, Glaesener AG, Mettler T, Fitz-Gibbon ST, Gallaher SD, Liu B, et al. 2013. Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Plant Cell 25: 4305-4323. https://doi.org/10.1105/tpc.113.117580
  12. Gonzalez-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR. 2010. RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell 22: 2058-2084. https://doi.org/10.1105/tpc.109.071167
  13. Pootakham W, Gonzalez-Ballester D, Grossman AR. 2010. Identification and regulation of plasma membrane sulfate transporters in Chlamydomonas. Plant Physiol. 153: 1653-1668. https://doi.org/10.1104/pp.110.157875
  14. Aksoy M, Pootakham W, Pollock SV, Moseley JL, Gonzalez- Ballester D, Grossman AR. 2013. Tiered regulation of sulfur deprivation responses in Chlamydomonas reinhardtii and identification of an associated regulatory factor. Plant Physiol. 162: 195-211. https://doi.org/10.1104/pp.113.214593
  15. Moseley JL, Chang C-W, Grossman AR. 2006. Genomebased approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. Eukaryot. Cell 5: 26-44. https://doi.org/10.1128/EC.5.1.26-44.2006
  16. Blaby-Haas CE, Merchant SS. 2012. The ins and outs of algal metal transport. Biochim. Biophys. Acta 1823: 1531-1552. https://doi.org/10.1016/j.bbamcr.2012.04.010
  17. Hsieh SI, Castruita M, Malasarn D, Urzica E, Erde J, Page MD, et al. 2013. The proteome of copper, iron, zinc, and manganese micronutrient deficiency in Chlamydomonas reinhardtii. Mol. Cell. Proteomics 12: 65-86. https://doi.org/10.1074/mcp.M112.021840
  18. Page MD, Allen MD, Kropat J, Urzica EI, Karpowicz SJ, Hsieh SI, et al. 2012. Fe sparing and Fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii. Plant Cell 24: 2649-2665. https://doi.org/10.1105/tpc.112.098962
  19. Bolling C, Fiehn O. 2005. Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiol. 139: 1995-2005. https://doi.org/10.1104/pp.105.071589
  20. Lu N, Chen J-H, Wei D, Chen F, Chen G. 2016. Global metabolic regulation of the snow alga Chlamydomonas nivalis in response to nitrate or phosphate deprivation by a metabolome profile analysis. Int. J. Mol. Sci. 17: 694. https://doi.org/10.3390/ijms17050694
  21. Lee J-E, Cho YU, Kim KH, Lee DY. 2016. Distinctive metabolomic responses of Chlamydomonas reinhardtii to the chemical elicitation by methyl jasmonate and salicylic acid. Process Biochem. 51: 1147-1154. https://doi.org/10.1016/j.procbio.2016.05.029
  22. Lee DY, Fiehn O. 2008. High quality metabolomic data for Chlamydomonas reinhardtii. Plant Methods 4: 1. https://doi.org/10.1186/1746-4811-4-1
  23. Lee DY, Fiehn O. 2013. Metabolomic response of Chlamydomonas reinhardtii to the inhibition of target of rapamycin (TOR) by rapamycin. J. Microbiol. Biotechnol. 23: 923-931. https://doi.org/10.4014/jmb.1304.04057
  24. Lee DY, Park J-J, Barupal DK, Fiehn O. 2012. System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium. Mol. Cell. Proteomics 11: 973-988. https://doi.org/10.1074/mcp.M111.016733
  25. Scholz M, Fiehn O. 2007. SetupX - a public study design database for metabolomic projects, pp. 169-180. In Altman RB, Dunker AK, Hunter L, Murray T, Klein TE (eds.). Proceedings of the Pacific Symposium on Biocomputing, Grand Wailea, Maui, Hawaii, 3-7 January 2007. World Scientific Publishing, Singapore.
  26. Xia J, Sinelnikov IV, Han B, Wishart DS. 2015. MetaboAnalyst 3.0 - making metabolomics more meaningful. Nucleic Acids Res. 43: W251-W257. https://doi.org/10.1093/nar/gkv380
  27. Huang CY, Roessner U, Eickmeier I, Genc Y, Callahan DL, Shirley N, et al. 2008. Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphatedeficient barley plants (Hordeum vulgare L.). Plant Cell Physiol. 49: 691-703. https://doi.org/10.1093/pcp/pcn044
  28. Schluter U, Colmsee C, Scholz U, Brautigam A, Weber AP, Zellerhoff N, et al. 2013. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genomics 14: 442. https://doi.org/10.1186/1471-2164-14-442
  29. Khozin-Goldberg I, Cohen Z. 2006. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67: 696-701. https://doi.org/10.1016/j.phytochem.2006.01.010
  30. Feng T-Y, Yang Z-K, Zheng J-W, Xie Y, Li D-W, Murugan SB, et al. 2015. Examination of metabolic responses to phosphorus limitation via proteomic analyses in the marine diatom Phaeodactylum tricornutum. Sci. Rep. 5: 10373. https://doi.org/10.1038/srep10373
  31. Smilde AK, Jansen JJ, Hoefsloot HC, Lamers R-JA, Van Der Greef J, Timmerman ME. 2005. ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics 21: 3043-3048. https://doi.org/10.1093/bioinformatics/bti476
  32. Lee DY, Heo S, Kim SG, Choi H-K, Lee H-J, Cho S-M, Auh J-H. 2013. Metabolomic characterization of the region-and maturity-specificity of Rubus coreanus Miquel (Bokbunja). Food Res. Int. 54: 508-515. https://doi.org/10.1016/j.foodres.2013.07.003
  33. Wiklund S, Johansson E, Sjoestroem L, Mellerowicz EJ, Edlund U, Shockcor JP, et al. 2008. Visualization of GC/ TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 80: 115-122. https://doi.org/10.1021/ac0713510
  34. Park SJ, Jeong IH, Kong BS, Lee J-E, Kim KH, Lee DY, Kim HJ. 2016. Disease type- and status-specific alteration of csf metabolome coordinated with clinical parameters in inflammatory demyelinating diseases of CNS. PLoS One 11: e0166277. https://doi.org/10.1371/journal.pone.0166277
  35. Mothes K, Schutte H. 1963. The biosynthesis of alkaloids II. Angew. Chem. Int. Ed. Engl. 2: 441-458. https://doi.org/10.1002/anie.196304411
  36. Dewick PM. 2009. The shikimate pathway: aromatic amino acids and phenylpropanoids, pp. 137-186. Medicinal Natural Products: A Biosynthetic Approach. 3rd Ed. John Wiley & Sons, NY. USA.

Cited by

  1. Development and characterization of a Nannochloropsis mutant with simultaneously enhanced growth and lipid production vol.13, pp.None, 2017, https://doi.org/10.1186/s13068-020-01681-4