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Introduction

Phosphorus (P) is an essential macronutrient for growth

and production in all living organisms, including such

photosynthetic organisms as higher plants and photosynthetic

microalgae [1, 2]. Primarily, phosphorus composes structural

constituents (e.g., nucleic acids and phospholipids), and

universally altered carbohydrates and proteins [2]. Thus,

phosphorus deprivation provokes complicated metabolic

reshuffling, which allows scavenging and relocation

processes for phosphorus coupled with photosynthetic

carbon fixation and carbohydrate-nitrogen metabolism [3].

Since the nutrient is frequently limited owing to relatively

high demands and frequent sequestration as unavailable

chemical forms [4], comprehensive studies on phosphorus

metabolism lead to better agricultural and environmental

strategies by optimizing the management and development

of more suitable crops [5].

However, investigations using higher plant systems are

often complicated by long development periods and the

existence of multiple cell types, which all obstruct the

comprehensive understanding of the highly interactive

regulatory processes involved in metabolism [6]. Alternatively,

the unicellular green alga Chlamydomonas reinhardtii is an

attractive resource as a model organism, as it has been fully

genome-sequenced and is available for genetic and

molecular tools. In particular, this organism has been

studied for the purpose of resolving the responses of

photosynthetic eukaryotes to the deprivation of various

nutrients [7, 8], including nitrogen [9-11], sulfur [12-14],

phosphorus [2, 4, 15], and iron [16-18].

Accordingly, we exploited the photosynthetic microalga

C. reinhardtii to systematically characterize metabolic

responses to phosphate deprivation. In order to enrich

understanding of the intricate metabolic modulation, we

applied metabolome-wide analysis using GC-TOF MS
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Understanding phosphorus metabolism in photosynthetic organisms is important as it is

closely associated with enhanced crop productivity and pollution management for natural

ecosystems (e.g., algal blooming). Accordingly, we exploited highly time-resolved metabolic

responses to different levels of phosphate deprivation in Chlamydomonas reinhardtii, a

photosynthetic model organism. We conducted non-targeted primary metabolite profiling

using gas-chromatography time-of-flight mass spectrometric analysis. Primarily, we

systematically identified main contributors to degree-wise responses corresponding to the

levels of phosphate deprivation. Additionally, we systematically characterized the metabolite

sets specific to different phosphate conditions and their interactions with culture time. Among

them were various types of fatty acids that were most dynamically modulated by the

phosphate availability and culture time in addition to phosphorylated compounds. 
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with an emphasis on primary metabolites. In addition to

examining a snapshot at a single time point [19], we

monitored time-dependent dynamics in metabolic regulation

along with five representative growth phases [20]. Furthermore,

we conducted degree-wise metabolic responses by applying

differential levels of phosphate deprivation, which aids in

resolving the factor-specific metabolic features from

temporal effects on the metabolism [21].

Materials and Methods

Growth Condition

C. reinhardtii wild-type strain CC125 was used for this study.

The cells were cultured in Tris acetate phosphate medium at 23°C

under continual illumination with cool-white fluorescent bulbs at

a fluence rate of 70 µmol m-2 s-1 and with continuous shaking

(130 rpm) for pre-culture. The pre-culture was harvested at late

log-phase and used to inoculate a main culture at a starting

density of 5 × 106 cells/ml under three different phosphate

conditions (control condition with 1 mM-100%, partially deprived

condition of 0.5 mM-50%, and completely deprived condition of

0 mM-0%) using a 20 ml total volume in 125 ml flasks. Six

independent cultures for each condition were used for metabolite

profiling. The cell numbers were counted using the EVE automatic

cell counter (NanoEnTek, USA).

Quenching and Extraction Method for Metabolite Profiling

For the quenching step, 1 ml of cell culture was rapidly mixed

with 1 ml of -20°C cold methanol (70% methanol in pure water

(v/v)) [22]. The quenched cells were collected after centrifugation

(5 min at 16,100 ×g) at 4°C and prompt removal of the supernatant.

The cell pellets were lyophilized (48 h), and stored at -80°C until

analysis. The lyophilized cells were ground using a single 5 mm

i.d. steel ball using mixer Mill MM400 (Retsch GmbH & Co.,

Germany) followed by the addition of 750 µl of extraction solvent

(methanol:isopropanol:water, 3:3:2 (v/v/v)) [23]. Afterwards, the

mixtures were sonicated (5 min), centrifuged (5 min, 16,100 ×g at

4°C), and transferred to a new 1.5 ml tube. The aliquots were

concentrated to complete dryness.

GC-TOF MS Analysis

Five microliters of pyridine (Thermo, USA) with 40 mg/ml

methoxyamine hydrochloride (Sigma-Aldrich, USA) was added to

the dried extracts and incubated (200 rpm and 90 min at 30°C) for the

first derivatization step. Two microliters of fatty acid methyl esters

(FAMEs) and 45 µl of N-methyl-N-trimethylsilyltrifluoroacetamide

(MSTFA + 1% TMCS; Thermo, USA) were added, and shaken for

60 min (200 rpm at 37°C). The derivatized metabolites were

injected using an Agilent 7890B ALS (Agilent, USA) in splitless

mode, chromatographically separated on the Agilent 7890B gas

chromatograph, and analyzed with a LECO Pegasus HT time-of-

flight mass spectrometer [24].

Data Processing and Statistical Analysis

Result files were exported to a server computer and processed

by the BinBase algorithm [25]. The processed raw data were then

normalized by total ion chromatogram signals of all structurally

identified compounds before statistical analysis.

Univariate statistical analyses were conducted with the

Student’s t-test (p < 0.05) using the Statistica software ver. 7.0

(StatSoft, USA). The score scatter plot, loading scatter plot, variable

importance in projection analysis, and shared-unique structure

plot analysis were carried out using by orthogonal projections to

latent structures-discriminant analysis (O2PLS-DA) using SIMCA-P

(ver. 14.0; Umetrics, Sweden). ANOVA-simultaneous component

analysis (ASCA) was performed with the dataset, with log-

transformation and auto-scaling implemented in the Metaboanalyst

web portal [26].

Results and Discussion

Alterations in Cellular Growth and Metabolic Phenotype in

Response to Phosphate Deprivation 

Differential cellular growth was observed after 48 h

under the 0%-P condition (p = 0.038), whereas the 50%-P

condition did not show significant differences (p = 0.542)

after 96-h culture compared with the control (Fig. 1).

Subsequently, we selected five different time points (8, 12,

24, 48, and 96 h) to monitor the metabolic responses of the

Chlamydomonas cells to differential levels of phosphate

deficiency. We applied non-targeted metabolite profiling

based on GC-TOF MS which resulted in the structural

identification of 83 compounds with 1,061 metabolic

signatures using the BinBase algorithm. A list of all

identified metabolites is provided in Supplemental Fig. S1.

Initially, orthogonal partial least squares discriminant

analysis (O2PLS-DA) revealed that the metabolic phenotype

Fig. 1. Cell growth curves under the control (100%-P), 50%-P,

and 0%-P conditions (n = 6 for each). 
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was primarily influenced by culture time, where the

metabolite profiles showed transitional changes in a

counterclockwise direction in the score scatter plot (Fig. 2A).

Different levels of phosphate content also induced distinctive

metabolic regulation, which was amplified with culture

time (Fig. 2A). Despite the identical growth rates, the cells

in the 50%-P condition showed distinct clusters from those

in 100%-P at all time points (R2Y = 0.851 and Q2 = 0.571)

(Fig. S2), when the two conditions were directly compared. 

Major contributors to the distinctive metabolic regulation

in a time-dependent manner were identified using variable

importance plot analysis. Primarily, phosphate-containing

metabolites were at the top of the list, which included

phosphate, pyrophosphate, fructose-6-phosphate, 6-

phosphogluconic acid, and glucose-6-phosphate (Fig. 2B).

The exclusive alteration in phosphorylated compounds

was in accordance with observations in higher plant

systems such as barley [27] and maize [28]. The rest of the

list was amino acids, homoserine, β-alanine, nucleosides,

5’-deoxy-5’-methylthioadenosine, and guanosine. Homoserine,

an intermediate for methionine, threonine, and isoleucine

biosynthesis, has been reported to be an important

constituent of the ether lipid complex in C. reinhardtii [29].

The association with altered lipid metabolism was also

found in increased levels in beta-alanine, which is converted

to malonyl-CoA and enters fatty acid biosynthesis. The

characteristic changes in the amino acids linked to lipid

metabolism were evidenced by the concomitant up-

regulation in a broad range of fatty acids in the phosphate-

deprived cells (Fig. S3). In addition to the changes in the

specific amino acids linked to lipid metabolism, a range of

amino acids showed significant increases in their contents,

especially at 96 h (Fig. S3). The concomitant increases in

general amino acids implied an up-regulation in the

protein digestion process triggered by nutritional deficiency

[28]. The increased amino acid levels in Chlamydomonas

cells were consistent with previous reports on maize

[28]. Likewise, proteomics analysis of a marine diatom,

Phaeodactylum tricornutum, revealed up-regulation in the

metabolic process under phosphorus deprivation [30]. 

Systematic Isolation of the Phosphate Condition-Specific

Metabolic Response 

The temporal effect veiled the differential metabolic

phenotypes of the Chlamydomonas cells under P-deprivation

conditions, as seen in the sample score scatter plot (Fig. 2).

Thus, we explored the isolation metabolite sets whose

regulation was exclusively dependent on the phosphate

Fig. 2. (A) The score scatter plot, and (B) the plot of variable importance in projection (VIP) analysis and the list of metabolites

with the highest VIP scores analyzed by orthogonal projection to latent structures-discriminant analysis (O2PLS-DA).
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availability. In order to systematically resolve phosphate

condition-specific metabolite dynamics from the time

dimension, we performed the ASCA. This statistical method

splits variations of the entire dataset into parts that can be

allocated to influences from different factors and their

interactions [31, 32]. The ASCA was first conducted to

construct well-modeled components that corresponded to

the phosphate condition, culture time, or an interaction

between the two factors. The statistical power was evaluated

with a permutation test (20 times), which resulted in

validation of the model as confirmed by the statistical

values p = 0.05, p < 0.05, and p = 0.3 for culture condition,

time, and interaction, respectively (Fig. S4). The resultant

model isolated major trends associated with culture

condition and time. The condition-specific pattern was

primarily characterized by gradual decreases according to

the phosphate levels (Fig. S4). Subsequent analysis revealed

that the significant factors were phosphate, glyceric acid,

lignoceric acid, 2-hydroxypyridine, glycerol-1-phosphate,

and phosphogluconic acid (Fig. 3A). In addition, the

metabolites, which were designated as interactive factors

with a combination of culture condition and time, were

mainly free fatty acids such as palmitic acid, stearic acid,

pentadecanoic acid, heptadecanoic acid, and oleic acid

(Fig. 3B). The fatty acids showed interactive expression levels,

with characteristic temporal patterns as the phosphate

level decreased (Fig. S5). The metabolites under the control

condition were relatively constant or decreased moderately

with increased culture duration, whereas those at 50%-P

reached maximum abundance at 12 h and gradually

decreased afterward. Likewise, the fatty acids at 0%-P

showed similar temporal alterations but the expression

levels reached the highest levels with the longest culture

period (96 h).

Metabolic Commonness and Uniqueness between Different

Levels of Phosphate Availability 

Next, we explored the primary factors that correspond to

(i) common metabolic responses shared by 50%-P and 0%-P

conditions and (ii) unique metabolic regulation distinctively

induced by each condition. In order to systematically

identify the different types of metabolite sets, we applied a

statistical approach using shared-and-unique-structures

plot analysis in the O2PLS-DA model [33, 34]. The

metabolites distributed along the diagonal line indicated a

similar pattern of metabolic regulation between the two

Fig. 3. ANOVA-simultaneous component analysis (ASCA) with leverage/squared prediction error (SPE) scatter plots and the

significant factors of the ASCA-variables submodel (A) culture condition and (B) interaction between culture condition and time.
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conditions (50 and 0%-P) in a positive or negative direction

compared with the control. Likewise the metabolites

positioned near the x- and y-axes presented unique effects,

which were distinctively regulated by the two different

conditions (50 and 0%-P) compared with the control.

O2PLS-DA models were constructed by pairwise

comparison of 50%- and 0%- P conditions with the control

at each culture time point (8, 12, 24, 48, and 96 h). Primarily,

joint metabolic responses between both conditions dominated

for most of metabolites across all culture durations (Fig. 4

and Fig. S4). The results showed that similar patterns

of metabolic responses were provoked by phosphate

deficiency, regardless of the level. A few exceptions were

detected at 8, 12, and 96 h. Medium-chain fatty acids

(MFAs), pelargonic acid (C9:0), capric acid (C10:0), and

lauric acid (C10:0) showed up-regulation in 0%-P, but they

were down-regulated under 50%-P relative to the controls.

The opposite expression patterns were sustained during

the early time points (8 and 12 h). Contrarily, long-chain

fatty acids (LFAs) and neutral lipids were up-regulated

exclusively in 50%-P at equivalent time points. These

LFAs included palmitic acid (C16:0), linolenic acid (C18:3),

1-monopalmitin, and 1-monostearin (Fig. S6).

In contrast, the Chlamydomonas cells responded orthogonally

according to the levels of phosphate at 24 and 48 h (Fig. 4).

The metabolites within boxes 1 and 3 exhibited 0% P-

specific alterations in positive or negative directions,

whereas those within boxes 2 and 4 showed 50% P-specific

regulation. At 24 h, Chlamydomonas cells that were partially

deprived of phosphate (50%-P) overproduced pyrophosphate,

sorbitol, mannitol, linolenic acid, and 2-hydroxyvaleric

acid. Increased levels of urea were accompanied by a

decrease in cytidine-5-monophosphate and beta-alanine,

which were linked to recycling in the pyrimidine pathway.

The cells under complete P-deprivation (0%-P) were

characterized by alterations in central carbon and nitrogen

metabolisms. In particular, the increase in glucose with the

decrease of glucose-6-phosphate indicated a direct impact

of P-deprivation on the rate-limiting step of glycolysis.

Increased levels of glycerate also implied a slow-down in

central carbon metabolism where glycerate is converted

to glycerate-2-phosphate or glycerate-3-phosphate via

phosphorylation. After 48 h, down-regulation of free fatty

acids with longer chain lengths, such as myristic acid

(C14:0), pentadecanoic acid (C15:0), and heptadecanoic

acid (C17:0), was prevalent under the phosphate-deprived

condition, whereas MFAs showed a negative specific

correlation with mild phosphate suppression (50%-P).

Fig. 4. Shared-unique structure plot analysis by O2PLS-DA. 

The x-axis presents the model discriminating between the control versus 50%-P and the y-axis indicates the separating model for the comparison

between the control versus 0%-P at the time point of 24 h (A) and 48 h (B). (A) Myo-inositol (InoOH), glyceric acid (GlyAc), methionine sulfoxide

(MetS), glucose (Glc), L-cysteine (Cys), threitol (ThrOH), beta-alanine (bAla), mannitol (ManOH), linolenic acid (C18:3), 2-hydroxyvaleric acid

(hValA), glucose-6-phospahte (G6P), 1-monostearin (MS), thymine (Thy), and phosphogluconic acid (PGAc). (B) L-Homoserine (LHL), leucine

(Leu), tyrosine (Tyr), ornithine (Orn), pelargonic acid (C9:0), capric acid (CaA), oxoproline (Oxo), O-phosphorylethanolamine (OPE), threose

(Tho), adenosine-5-monophosphate (AMP), beta-hydroxybutyric acid (bHBA), glycerol (Glyol), fructose (Fru), tagatose (Tag), oleic acid (OA),

myristic acid (MyrA), heptadecanoic acid (HeptA), and pentadecanoic acid (C15:0).
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Considering the linkage between the primary metabolism

and the integrative cellular physiology, it was interesting

that the significant alterations observed in the central

carbon metabolism, fatty acid metabolism, and amino acid

metabolism in the 50%-P condition were not accompanied

by a differential growth rate. The relatively lower level of

phosphorus may be sufficient to maintain cellular growth

at a rate comparable to 100%-P; however, the suboptimal

level may induce differential metabolic regulation as

observed in our study. The cells may explore optimal

redistribution of biochemical resources by sensitively

sensing and rapidly adapting to the continuously changing

environmental factors [7, 24]. 

In addition, we analyzed a potential linkage of the

central carbon/nitrogen metabolism, which was globally

reshuffled by the phosphate deprivation, to the secondary

metabolism. Indeed, preliminary pathway mapping onto

the Kyoto Encyclopedia of Genes and Genomes database

implied that the long exposure under phosphate deficiency

led to an alteration in secondary metabolism (Fig. S7). The

potential activation of secondary metabolism was predicted

on the basis of increased levels of amino acids and organic

acids. The up-regulation of tyrosine, valine, isoleucine,

leucine, succinate, citrate, and fumarate was linked to the

potential activation of alkaloid biosynthesis [35]. Tyrosine,

valine, isoleucine, and leucine were linked to the

biosynthesis of glucosinolate, whereas the increased levels

of succinate, citrate, and fumarate indicated the up-regulated

biosynthesis of phenylpropanoids and terpenoids [36].

Although we limited the scope to primary metabolites in

the current study, integrative analysis including secondary

metabolism and using a compatible analytical platform

(e.g., LC-MS) can lead to more comprehensive understanding

of the metabolic network in response to nutritional stress in

a photosynthetic microalga.

Overall, our findings in the current experiment

demonstrated the metabolic sensitivity of the Chlamydomonas

cells, which is sufficient to respond distinctively to subtle

differences in the medium contents (phosphate levels)

despite identical physiological properties (e.g., cell growth).

Furthermore, the metabolomic profiles consisting of degree-

wise perturbation with temporal dynamics revealed

culture condition-specific regulation and shared metabolic

synchronization, which was successfully resolved from the

time-dependent metabolic responses.
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