DOI QR코드

DOI QR Code

Immunosuppressive Effects of Bryoria sp. (Lichen-Forming Fungus) Extracts via Inhibition of CD8+ T-Cell Proliferation and IL-2 Production in CD4+ T Cells

  • Hwang, Yun-Ho (Department of Pharmacy, Sunchon National University) ;
  • Lee, Sung-Ju (Department of Pharmacy, Sunchon National University) ;
  • Kang, Kyung-Yun (Department of Pharmacy, Sunchon National University) ;
  • Hur, Jae-Seoun (Korean Lichen Research Institute, Sunchon National University) ;
  • Yee, Sung-Tae (Department of Pharmacy, Sunchon National University)
  • Received : 2017.02.02
  • Accepted : 2017.04.02
  • Published : 2017.06.28

Abstract

Lichen-forming fungi are known to have various biological activities, such as antioxidant, antimicrobial, antitumor, antiviral, anti-inflammation, and anti proliferative effects. However, the immunosuppressive effects of Bryoria sp. extract (BSE) have not previously been investigated. In this study, the inhibitory activity of BSE on the proliferation of $CD8^+$ T cells and the mixed lymphocytes reaction (MLR) was evaluated in vitro. BSE was non-toxic in spleen cells and suppressed the growth of splenocytes induced by anti-CD3. The suppressed cell population in spleen cells consisted of $CD8^+$ T cells and their proliferation was inhibited by the treatment with BSE. This extract significantly suppressed the IL-2 associated with T cell growth and $IFN-{\gamma}$ as the $CD8^+$ T cell marker. Furthermore, BSE reduced the expression of the IL-2 receptor alpha chain ($IL-2R{\alpha}$) on $CD8^+$ T cells and CD86 on dendritic cells by acting as antigen-presenting cells. Finally, the MLR produced by the co-culture of C57BL/6 and MMC-treated BALB/c was suppressed by BSE. IL-2, $IFN-{\gamma}$, and CD69 on $CD8^+$ T cells in MLR condition were inhibited by BSE. These results indicate that BSE inhibits the MLR via the suppression of $IL-2R{\alpha}$ expression in $CD8^+$ T cells. BSE has the potential to be developed as an anti-immunosuppression agent for organ transplants.

Keywords

References

  1. Kobayashi K, Kaneda K, Kasama T. 2001. Immunopathogenesis of delayed-type hypersensitivity. Microsc. Res. Tech. 53: 241-245. https://doi.org/10.1002/jemt.1090
  2. Yin Y, Gong FY, Wu XX, Sun Y, Li YH, Chen T, Xu Q. 2008. Anti-inflammatory and immunosuppressive effect of flavones isolated from Artemisia vestita. J. Ethnopharmacol. 120: 1-6. https://doi.org/10.1016/j.jep.2008.07.029
  3. Taylor AL, Watson CJ, Bradley JA. 2005. Immunosuppressive agents in solid organ transplantation: mechanisms of action and therapeutic efficacy. Crit. Rev. Oncol. Hematol. 56: 23-46. https://doi.org/10.1016/j.critrevonc.2005.03.012
  4. Bueno V, Pestana JO. 2002. The role of CD8+ T cells during allograft rejection. Braz. J. Med. Biol. Res. 35: 1247-1258. https://doi.org/10.1590/S0100-879X2002001100001
  5. Castello M, Skert N. 2005. Evaluation of lichen diversity as an indicator of environmental quality in the North Adriatic submediterranean region. Sci. Total Environ. 336: 201-214. https://doi.org/10.1016/j.scitotenv.2004.06.007
  6. Molnar K, Farkas E. 2010. Current results on biological activities of lichen secondary metabolites: a review. Z. Naturforsch. C 65: 157-173.
  7. Nadyeina O, Cornejo C, Boluda CG, Myllys L, Rico VJ, Crespo A, Scheidegger C. 2014. Characterization of microsatellite loci in lichen-forming fungi of Bryoria section Implexae (Parmeliaceae). Appl. Plant Sci. 2: apps.1400037. https://doi.org/10.3732/apps.1400037
  8. Fernandez-Moriano C, Divakar PK, Crespo A, Gomez- Serranillos MP. 2015. Neuroprotective activity and cytotoxic potential of two Parmeliaceae lichens: identification of active compounds. Phytomedicine 22: 847-855. https://doi.org/10.1016/j.phymed.2015.06.005
  9. Myllys L, Velmala S, Holien H, Halonen P, Wang LS, Goward T. 2011. Phylogeny of the genus Bryoria. Lichenologist 43: 617-638. https://doi.org/10.1017/S0024282911000132
  10. Boustie J, Grube M. 2007. Lichens - a promising source of bioactive secondary metabolites. Plant Genet. Resour. 3: 273-287.
  11. Yamamoto Y, Mizuguchi R, Yamada Y. 1985. Tissue cultures of Usnea rubescens and Ramalina yasudae and production of usnic acid in their cultures. Agric. Biol. Chem. 49: 3347-3348.
  12. Yoshimura I, Yamamoto Y, Nakano T, Finnie J. 2002, Isolation and culture of lichen photobionts and mycobionts. Protocols in Lichenology, Ch. 3. Springer, Germany.
  13. Vial T, Descotes J. 2003. Immunosuppressive drugs and cancer. Toxicology 185: 229-240. https://doi.org/10.1016/S0300-483X(02)00612-1
  14. Trambley J, Bingaman AW, Lin A, Elwood ET, Waitze SY, Ha J, et al. 1999. Asialo GM1(+) CD8(+) T cells play a critical role in costimulation blockade-resistant allograft rejection. J. Clin. Invest. 104: 1715-1722. https://doi.org/10.1172/JCI8082
  15. O'Garra A. 1998. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8: 275-283. https://doi.org/10.1016/S1074-7613(00)80533-6
  16. Golshayan D, Buhler L, Lechler RI, Pascual M. 2007. From current immunosuppressive strategies to clinical tolerance of allografts. Transpl. Int. 20: 12-24. https://doi.org/10.1111/j.1432-2277.2006.00401.x
  17. Li L, Yee C, Beavo JA. 1999. CD3- and CD28-dependent induction of PDE7 required for T cell activation. Science 283: 848-851. https://doi.org/10.1126/science.283.5403.848
  18. Lanier LL, O'Fallon S, Somoza C, Phillips JH, Linsley PS, Okumura K, et al. 1995. CD80 (B7) and CD86 (B70) provide similar costimulatory signals for T cell proliferation, cytokine production, and generation of CTL. J. Immunol. 154: 97-105.
  19. Kutukculer N, Shenton BK, Clark K, Rigg KM, Forsythe JL, Kirby JA, et al. 1995. Renal allograft rejection: the temporal relationship and predictive value of plasma TNF (alpha and beta), IFN-gamma and soluble ICAM-1. Transpl. Int. 8: 45-50.
  20. Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW. 1995. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3: 521-530. https://doi.org/10.1016/1074-7613(95)90180-9
  21. Przepiorka D, Kernan NA, Ippoliti C, Papadopoulos EB, Giralt S, Khouri I, et al. 2000. Daclizumab, a humanized anti-interleukin-2 receptor alpha chain antibody, for treatment of acute graft-versus-host disease. Blood 95: 83-89.
  22. Sharifian M, Arad B, Simfroosh N, Basiri A, Otukesh H, Esfandiar N. 2014. Effects of interleukin 2 receptor blockers on patient and graft survival in renal-transplanted children. Nephrourol. Mon. 6: e18641.
  23. Cella M, Sallusto F, Lanzavecchia A. 1997. Origin, maturation and antigen presenting function of dendritic cells. Curr. Opin. Immunol. 9: 10-16. https://doi.org/10.1016/S0952-7915(97)80153-7
  24. Banchereau J, Steinman RM. 1998. Dendritic cells and the control of immunity. Nature 392: 245-252. https://doi.org/10.1038/32588
  25. Blazar BR, Sharpe AH, Taylor PA, Panoskaltsis-Mortari A, Gray GS, Korngold R, Vallera DA. 1996. Infusion of anti- B7.1 (CD80) and anti-B7.2 (CD86) monoclonal antibodies inhibits murine graft-versus-host disease lethality in part via direct effects on CD4+ and CD8+ T cells. J. Immunol. 157: 3250-3259.
  26. Vincenti F, Larsen C, Durrbach A, Wekerle T, Nashan B, Blancho G, et al. 2005. Costimulation blockade with belatacept in renal transplantation. N. Engl. J. Med. 353: 770-781. https://doi.org/10.1056/NEJMoa050085
  27. Ueta M, Kweon MN, Sano Y, Sotozono C, Yamada J, Koizumi N, et al. 2002. Immunosuppressive properties of human amniotic membrane for mixed lymphocyte reaction. Clin. Exp. Immunol. 129: 464-470. https://doi.org/10.1046/j.1365-2249.2002.01945.x
  28. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, et al. 2003. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102: 3837-3844. https://doi.org/10.1182/blood-2003-04-1193
  29. Ellis JD, Neil DA, Inston NG, Jenkinson E, Drayson MT, Hampson P, et al. 2016. Inhibition of histone deacetylase 6 reveals a potent immunosuppressant effect in models of transplantation. Transplantation 100: 1667-1674. https://doi.org/10.1097/TP.0000000000001208
  30. Cullen PR, Lester S, Rouch J, Morris PJ. 1977. Mixed lymphocyte reaction and graft survival in forty cadaveric renal transplants. Clin. Exp. Immunol. 28: 218-222.
  31. Craston R, Koh M, Mc Dermott A, Ray N, Prentice HG, Lowdell MW. 1997. Temporal dynamics of CD69 expression on lymphoid cells. J. Immunol. Methods 209: 37-45. https://doi.org/10.1016/S0022-1759(97)00143-9
  32. Posselt AM, Vincenti F, Bedolli M, Lantz M, Roberts JP, Hirose R. 2003. CD69 expression on peripheral CD8 T cells correlates with acute rejection in renal transplant recipients. Transplantation 76: 190-195. https://doi.org/10.1097/01.TP.0000073614.29680.A8

Cited by

  1. Differentiation of hypervascular primary hepatic tumors showing hepatobiliary hypointensity on gadoxetic acid-enhanced magnetic resonance imaging vol.44, pp.9, 2017, https://doi.org/10.1007/s00261-019-02068-2
  2. Atraric Acid Exhibits Anti-Inflammatory Effect in Lipopolysaccharide-Stimulated RAW264.7 Cells and Mouse Models vol.21, pp.19, 2017, https://doi.org/10.3390/ijms21197070