DOI QR코드

DOI QR Code

Optimization of Induction Conditions for Bacillus-derived Esterase Production by High-cell Density Fermentation of Recombinant Escherichia coli

재조합 대장균의 고농도 배양과 유도조건 최적화를 통한 Bacillus 유래 esterase의 생산

  • Received : 2017.03.16
  • Accepted : 2017.05.17
  • Published : 2017.06.28

Abstract

To increase the efficiency of esterase production by Bacillus, high cell-density culture of recombinant Escherichia coli through fed batch fermentation was tested. Cells were cultured to $OD_{600}$ of 76 (35.8 g/l DCW) with dissolved oxygen level controlled to least above 30% air saturation by supplying pure oxygen. Cells were cultured to an $OD_{600}$ of 90 (42.4 g/l DCW) with glucose feeding controlled to at least 1 g/l. However, the cells reached stationary phase at the late stage of culture, despite glucose being supplied. Cells were cultured to an $OD_{600}$ of 185 (87.3 g/l DCW) by supplying additional medium with fortified yeast extract. To increase the productivity of the recombinant protein, cell growth and esterase productivity based on induction time were evaluated. Late exponential phase induction for esterase production in fed batch fermentation resulted in maximum optical density $OD_{600}$ of 190 (89 g/l DCW) and maximum esterase activity of 1745 U/l, corresponding to a 5.8-fold enhancement in esterase production, compared to the early exponential phase induction. In this study, we established fermentation methods for achieving maximum production of Bacillus-derived esterase by optimizing IPTG induction time in high-cell density culture by supplying pure oxygen and a nitrogen source.

본 연구에서는 Bacillus 유래 esterase를 생산할 수 있는 재조합 대장균을 사용하여 유가식 배양을 이용한 고농도 균체 배양을 통해 esterase 생산성을 극대화하고자 하였다. 유가식 배양 중 순수 산소의 공급을 통해 용존산소를 30% 이상 유지한 경우와 포도당농도를 1 g/l 이상 유지한 경우 각각 $OD_{600}$ 76 (35.8 g/l DCW)과 $OD_{600}$ 90 (42.4 g/l DCW)까지 균체량을 증가시킬 수 있었다. 포도당의 공급에도 불구하고 배양 후반에 세포의 성장이 정체되는 현상을 극복하기 위해 yeast extract가 강화된 추가 배지의 공급을 시도하였으며, 그 결과 $OD_{600}$ 185 (87.3 g/l DCW)까지 고농도 균체 배양이 가능함을 확인하였다. 단백질 생산 수율의 향상을 위해 성장 시기에 따라 induction에 의한 세포 성장과 esterase 생산성을 평가하였고, 그 결과 대수 성장기 후반에 induction을 유도한 경우 세포 성장 측면에서는 최대 $OD_{600}$ 190(89 g/l DCW)까지 고농도 균체 배양이 가능함을 확인하였다. Esterase 생산성 측면에서는 대수 성장기 초반에 induction 을 유도한 경우에 비해 최대 5.8배 생산성이 증가됨을 확인할 수 있었다. 따라서 본 연구를 통해 순수산소와 질소원의 공급을 통해 확립된 대장균 고밀도 배양방법을 기초로 IPTG 유도시간을 최적화 함으로써 Bacillus 유래 esterase의 최대 생산성을 확보할 수 있는 배양방법을 확립하였다.

Keywords

References

  1. Adrio JL, Demain AL. 2014. Microbial enzymes : tools for biotechnological process. Biomolecules 4: 117-139. https://doi.org/10.3390/biom4010117
  2. Souza PM, Magalhaes PO. 2010. Application of microbial ${\alpha}$-amylase in industry - A review. Braz. J. Micribiol. 41: 850-861. https://doi.org/10.1590/S1517-83822010000400004
  3. Lowe ME. 2002. The triglyceride lipases of the pancreas. J. Lipid Res. 43: 2007-2016. https://doi.org/10.1194/jlr.R200012-JLR200
  4. Yee LN, Akoh CC, Phillips RS. 1995. Terpene ester synthesis by lipase catalyzed transesterification. Biotechnol. Lett. 17: 67-70. https://doi.org/10.1007/BF00134198
  5. Patel RN. 2013. Biocatalytic synthesis of chiral alcohols and amino acids for development of pharmaceuticals. Biomolecules 3: 741-777. https://doi.org/10.3390/biom3040741
  6. Elmi F, Lee HT, Huang JY, Hsieh YC, Wang YL, Chen YJ, et al. 2005. Stereoselective esterase from Pseudomonas putida IFO12996 reveals alpha/beta hydrolase folds for D-beta-acetylthioisobutyric acid synthesis. J. Bacteriol. 187: 8470-8476. https://doi.org/10.1128/JB.187.24.8470-8476.2005
  7. Ghati A, Paul G. 2015. Purification and characterization of a thermo-halophilic, alkali-stable and extremely benzene tolerant esterase from a thermo-halo tolerant Bacillus cereus strain AGP-03, isolated from 'Bakreshwar' hot spring, India. Process Biochem. 50: 771-781. https://doi.org/10.1016/j.procbio.2015.01.026
  8. Kaiser P, Raina C, Parshad R, Johri S, Verma V, Andrabi KI, et al. 2006. A novel esterase form Bacillus subtillis (RRL 1789) : purification and characterization of the enzyme. Protein. Expr. Purif. 45: 262-268. https://doi.org/10.1016/j.pep.2005.08.030
  9. Kim HK, Na HS, Park MS, Oh TK, Lee TS. 2004. Occurrence of ofloxacin ester-hydrolyzing esterase from Bacillus niacin EM001. J. Mol. Caltal B: Enzym. 27: 237-241. https://doi.org/10.1016/j.molcatb.2003.11.007
  10. Baeshen MN, Al-Hejin AM, Bora RS, Ahmed MM, Ramadan HA, Saini KS, et al. 2015. Production of biopharmaceuticals in E. coli : Current scenario and future perspective. J. Microbiol. Biotechnol. 25: 953-962. https://doi.org/10.4014/jmb.1412.12079
  11. Djokic L, Spasic J, Jeremic S, Vasilievic B, Prodanovic O, Prodanovic R, et al. 2015. Immobilization of Escherichia coli cells expressing 4-oxalocrotonate tautomerase for improved biotransformation of ${\beta}$-nitrostyrene. Bioprocess Biosyst. Eng. 38: 2389-2395. https://doi.org/10.1007/s00449-015-1474-8
  12. Zajkoska P, Rebros M, Rosenberg M. 2013. Biocatalysis with immobilized E. coli. Appl. Microbiol. Biotechnol. 97: 1441-1455. https://doi.org/10.1007/s00253-012-4651-6
  13. Shiloach J, Fass R. 2005. Growing E. coli to high cell density - a historical perspective on method development. Biotechnol. Adv. 23: 345-357. https://doi.org/10.1016/j.biotechadv.2005.04.004
  14. Nakagawa S, Oda H, Anazawa H. 1995. High cell density cultivation and high recombinant protein production of Escherichia coli strain expressing uricase. Biosci. Biotech. Biochem. 59: 2263-2267. https://doi.org/10.1271/bbb.59.2263
  15. Lee SY. 1996. High cell density culture of Escherichia coli. Trends Biotechnol. 14: 98-105. https://doi.org/10.1016/0167-7799(96)80930-9
  16. Luli GW, Strohl WR. 1990. Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl. Environ. Microbiol. 56: 1004-1011.
  17. Castan A, Enfors SO. 2000. Characteristics of DO controlled fed batch culture of Escherichia coli. Bioprocess Eng. 22: 509-515. https://doi.org/10.1007/s004499900094
  18. Yazdani SS, Shakri AR, Chitnis CE. 2004. A high cell density fermentation strategy to produce recombinant malarial antigen in E. coli. Biotechnol. Lett. 26: 1891-1895. https://doi.org/10.1007/s10529-004-6040-4
  19. Kovarova-Kovar K, Egli T. 1998. Growth kinetics of suspended microbial cells : From single-substrate-controlled growth to mixed-substrate kinetics. Microbiol. Mol. Biol. Rev. 62: 646-666.
  20. Belo I, Mota M. 1998. Batch and fed batch cultures of E. coli TB1 at different oxygen transfer rate. Bioprocess Eng. 18: 451-455.
  21. Liu YC, Chang WM, Lee CY. 1999. Effect of oxygen enrichment aeration on penicillin G acylase production in high cell density culture of recombinant E. coli. Bioprocess Eng. 21: 227-230.
  22. Ukkonen K, Veijola J, Vasala A, Neubauer P. 2013. Effect of culture medium, host strain and oxygen transfer on recombinant Fab antibody fragment yield and leakage to medium in shaken E. coli cultures. Microb. Cell Fact. 12: 73. https://doi.org/10.1186/1475-2859-12-73
  23. Eiteman MA, Altman E. 2006. Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 24: 530-536. https://doi.org/10.1016/j.tibtech.2006.09.001
  24. Suarez DC, Kilikian BV. 2000. Acetic acid accumulation in aerobic growth of recombinant Escherichia coli. Process Biochem. 35: 1051-1055. https://doi.org/10.1016/S0032-9592(00)00140-0
  25. Kweon DH, Han NS, Park KM, Seo JH. 2001. Overproduction of Phytolacca insularis protein in batch and fed-batch culture of recombinant Escherichia coli. Process Biochem. 36: 537-542. https://doi.org/10.1016/S0032-9592(00)00237-5
  26. Kilikian BV, Suarez ID, Liria CW, Gombert AK. 2000. Process strategies to improve heterologous protein production in Escherichia coli under lactose or IPTG induction. Process Biochem. 35: 1019-1025. https://doi.org/10.1016/S0032-9592(00)00137-0
  27. Yildir C. Onsan ZI, Kirdar B. 1998. Optimization of starting time and period of induction and inducer concentration in the production of the restriction enzyme EcoRI from recombinant Escherichia coli 294. Turk J. Chem. 22: 221-226.