DOI QR코드

DOI QR Code

Effect of feeding garlic leaves on rumen fermentation, methane emission, plasma glucose kinetics, and nitrogen utilization in sheep

  • Panthee, Arvinda (Department of Animal Science, Faculty of Agriculture, Iwate University) ;
  • Matsuno, Ayana (Department of Animal Science, Faculty of Agriculture, Iwate University) ;
  • Al-Mamun, Mohammad (Department of Animal Science, Faculty of Agriculture, Iwate University) ;
  • Sano, Hiroaki (Department of Animal Science, Faculty of Agriculture, Iwate University)
  • Received : 2017.01.12
  • Accepted : 2017.06.02
  • Published : 2017.06.30

Abstract

Background: Garlic and its constituents are reported to have been effective in reducing methane emission and also influence glucose metabolism in body; however, studies in ruminants using garlic leaves are scarce. Garlic leaves contain similar compounds as garlic bulbs, but are discarded in field after garlic bulb harvest. We speculate that feeding garlic leaves might show similar effect as garlic constituents in sheep and could be potential animal feed supplement. Thus, we examined the effect of freeze dried garlic leaves (FDGL) on rumen fermentation, methane emission, plasma glucose kinetics and nitrogen utilization in sheep. Methods: Six sheep were fed Control diet (mixed hay and concentrate (60:40)) or FDGL diet (Control diet supplemented with FDGL at 2.5 g/kg $BW^{0.75}$ of sheep) using a crossover design. Methane gas emission was measured using open-circuit respiratory chamber. Plasma glucose turnover rate was measured using isotope dilution technique of [$U-^{13}C$]glucose. Rumen fluid, feces and urine were collected to measure rumen fermentation characteristics and nitrogen utilization. Result: No significant difference in rumen fermentation parameters was noticed except for rumen ammonia tended to be higher (0.05 < P < 0.1) in FDGL diet. Methane emission per kg dry matter ingested and methane emission per kg dry matter digested were lower (P < 0.05) in FDGL diet. Plasma glucose concentration was similar between diets and plasma glucose turnover rate tended to be higher in FDGL diet (0.05 < P < 0.1). Nitrogen retention was higher (P < 0.05) and microbial nitrogen supply tended to be higher (0.05 < P < 0.1) in FDGL diet. Conclusion: FDGL diet did not impair rumen fermentation, improved nitrogen retention; while absence of significant results in reduction of methane emission, glucose turnover rate and microbial nitrogen supply, further studies at higher dose would be necessary to conclude the merit of FDGL as supplement in ruminant feedstuff.

Keywords

References

  1. Yang C, Chowdhury MAK, Huo Y, Gong J. Phytogenic compounds as alternatives to in-feed antibiotics: potentials and challenges in application. Pathogens. 2015;4:137-56. doi:10.3390/pathogens4010137.
  2. Kamruzzaman M, Torita A, Sako Y, Al-Mamun M, Sano H. Effects of feeding garlic stem and leaf silage on rates of plasma leucine turnover, whole body protein synthesis and degradation in sheep. Small Rumin Res. 2011;99:37-43. doi:10.1016/j.smallrumres.2011.03.052.
  3. Jouany JP, Morgavi DP. Use of "natural" products as alternatives to antibiotic feed additives in ruminant production. Animal. 2007;1:1443-66. doi:10.1017/S1751731107000742.
  4. Kamra DN, Agarwal N, Sakthivel PC, Chaudhary LC. Garlic as a rumen modifier for eco-friendly and economic livestock production. J Appl Anim Res. 2012;40:90-6. doi:10.1080/09712119.2011.607764.
  5. Rochfort S, Parker AJ, Dunshea FR. Plant bioactives for ruminant health and productivity. Phytochemistry. 2008;69:299-322. doi:10.1016/j.phytochem.2007.08.017.
  6. Martins N, Petropoulos S, Ferreira ICFR. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: a review. Food Chem. 2016;211:41-50. doi:10.1016/j.foodchem. 2016.05.029.
  7. Lawson LD. The composition and chemistry of garlic cloves and processed garlic. In: Koch HP, Lawson LD, editors. Garlic Sci Ther Appl Allium sativum L Relat species. Baltimore: Williams and Wilkins; 1996. p. 37-108.
  8. Hodjatpanah AA, Danesh Msegaran M, Vakili AR. Effects of diets containing monensin, garlic oil or turmeric powder on ruminal and blood metabolite responses of sheep. J Anim Vet Adv. 2010;9:3104-8. doi:10.3923/javaa.2010.3104.3108.
  9. Anassori E, Dalir-Naghadeh B, Pirmohammadi R, Hadian M. Changes in blood profile in sheep receiving raw garlic, garlic oil or monensin. J Anim Physiol Anim Nutr. 2015;99:114-22. doi:10.1111/jpn.12189.
  10. Pirmohammadi R, Anassori E, Zakeri Z, Tahmouzi M. Effects of garlic supplementation on energy status of pre-partum Mahabadi goats. Vet Res Forum. 2014;5:207-12.
  11. Tao M, Chen D, Tu Y, Zhang N, Si B, Deng K, et al. Effect of supplementation of allicin on methanogenesis and ruminal microbial Flora in Dorper crossbred ewes. J Anim Sci Biotechnol. 2016;7:1. doi:10.1186/s40104-015-0057-5.
  12. Klevenhusen F, Zeitz JO, Duval S, Kreuzer M, Soliva CR. Garlic oil and its principal component diallyl disulfide fail to mitigate methane, but improve digestibility in sheep. Anim Feed Sci Technol. 2011;166-167:356-63. doi:10.1016/j.anifeedsci.2011.04.071.
  13. Patra AK, Kamra DN, Bhar R, Kumar R, Agarwal N. Effect of Terminalia chebula and Allium sativum on in vivo methane emission by sheep. J Anim Physiol Anim Nutr. 2011;95:187-91. doi:10.1111/j.1439-0396.2010.01039.x.
  14. Manasri N, Wanapat M, Navanukraw C. Improving rumen fermentation and feed digestibility in cattle by mangosteen peel and garlic pellet supplementation. Livest Sci. 2012;148:291-5. doi:10.1016/j.livsci.2012.06.009.
  15. Bampidis VA, Christodoulou V, Christaki E, Florou-Paneri P, Spais AB. Effect of dietary garlic bulb and garlic husk supplementation on performance and carcass characteristics of growing lambs. Anim Feed Sci Technol. 2005;121:273-83. doi:10.1016/j.anifeedsci.2005.02.003.
  16. Busquet M, Calsamiglia S, Ferret A, Carro MD, Kamel C. Effect of garlic oil and four of its compounds on rumen microbial fermentation. J Dairy Sci. 2005;88:4393-404. doi:10.3168/jds.S0022-0302(05)73126-X.
  17. Soliva CR, Amelchanka SL, Duval SM, Kreuzer M. Ruminal methane inhibition potential of various pure compounds in comparison with garlic oil as determined with a rumen simulation technique (Rusitec). Br J Nutr. 2011;106:114-22. doi:10.1017/S0007114510005684.
  18. Nasim SA, Dhir B, Kapoor R, Fatima S, Mahmooduzzafar MA. Alliin obtained from leaf extract of garlic grown under in situ conditions possess higher therapeutic potency as analyzed in alloxan-induced diabetic rats. Pharm Biol. 2011;49:416-21. doi:10.3109/13880209.2010.521163.
  19. Arzanlou M, Bohlooli S. Introducing of green garlic plant as a new source of allicin. Food Chem. 2010;120:179-83. doi:10.1016/j.foodchem.2009.10.004.
  20. Edris AE, Fadel HM. Investigation of the volatile aroma components of garlic leaves essential oil. Possibility of utilization to enrich garlic bulb oil. Eur Food Res Technol. 2002;214:105-7. doi:10.1007/s00217-001-0429-2.
  21. Dziri S, Casabianca H, Hanchi B, Hosni K. Composition of garlic essential oil ( Allium sativum L.) as influenced by drying method. J Essent Oil Res. 2013;26:91-6. doi:10.1080/10412905.2013.868329.
  22. MAFF. An annual report. Tokyo: Ministry of Agriculture, Forestry and Fisheries (MAFF); 2016.
  23. AOAC. Official methods of analysis. 15th ed. Arlington: Association of Official Analytical Chemist; 1990.
  24. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74:3583-97. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  25. Weatherburn MW. Phenol-hypochlorite reaction for determination of ammonia. Anal Chem. 1967;39:971-4. https://doi.org/10.1021/ac60252a045
  26. Fujita T, Kajita M, Sano H. Responses of whole body protein synthesis, nitrogen retention and glucose kinetics to supplemental starch in goats. Comp Biochem Physiol. 2006;144:180-7. doi:10.1016/j.cbpb.2006.02.004.
  27. Hugget A, Nixon D. Enzymatic determination of blood glucose. Biochemistry. 1957;66:12.
  28. Chen XB, Gomez MJ. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives- an overview of the technical details. Bucksburn: Int Feed Reseouces Unit. Rowett Reseach Institute; 1992. p. 1-21.
  29. Tserng KY, Kalhan SC. Estimation of glucose carbon recyclig and glucose turnover with [U-13C]glucose. Am J Phys. 1983;245:E476-82.
  30. SAS Institute, Inc. SAS/STAT software: changes and enhancement Ver 6.11. Cary: SAS Institute; 1996.
  31. Dijkstra J, Ellis JL, Kebreab E, Strathe AB, Lopez S, France J, et al. Ruminal pH regulation and nutritional consequences of low pH. Anim Feed Sci Technol. 2012;172:22-33. doi:10.1016/j.anifeedsci.2011.12.005.
  32. Plaizier JC, Krause DO, Gozho GN, McBride BW. Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet J Elsevier Ltd. 2008;176:21-31. doi:10.1016/j.tvjl.2007.12.016.
  33. Patra AK, Kamra DN, Agarwal N, Chatterjee PN. Effect of Terminalia chebula and Allium sativum on rumen fermentation, enzyme activities and microbial profile in buffaloes. Indian J Anim Nutr. 2007;24:251-5.
  34. Chaves AV, Stanford K, Dugan MER, Gibson LL, McAllister TA, Van Herk F, et al. Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livest Sci. 2008;117:215-24. doi:10.1016/j.livsci.2007.12.013.
  35. Wanapat M, Khejornsart P, Pakdee P, Wanapat S. Effect of supplementation of garlic powder on rumen ecology and digestibility of nutrients in ruminants. J Sci Food Agric. 2008;88:2231-7. doi:10.1002/jsfa.3333.
  36. Garcia-Gonzalez R, Lopez S, Fernandez M, Bodas R, Gonzalez JS. Screening the activity of plants and spices for decreasing ruminal methane production in vitro. Anim Feed Sci Technol. 2008;147:36-52. doi:10.1016/j.anifeedsci.2007.09.008.
  37. Kamruzzaman M, Liang X, Sekiguchi N, Sano H. Effect of feeding garlic leaf on microbial nitrogen supply, kinetics of plasma phenylalanine, tyrosine and protein synthesis in sheep. Anim Sci J. 2014;85:542-8. https://doi.org/10.1111/asj.12190
  38. Wanapat M, Pimpa O. Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives and rice straw intake in swamp buffaloes. Asian-Aust J Anim Sci. 1999;12:904-7. doi:10.5713/ajas.1999.904.
  39. Zhu Z, Mao S, Zhu W. Effects of ruminal infusion of garlic oil on fermentation dynamics, fatty acid profile and abundance of bacteria involved in biohydrogenation in rumen of goats. Asian-Aust J Anim Sci. 2012;25:962-70. doi:10.5713/ajas.2011.11442.
  40. Yang WZ, Benchaar C, Ametaj BN, Chaves AV, He ML, McAllister TA. Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows. J Dairy Sci. 2007;90:5671-81. doi:10.3168/jds.2007-0369.
  41. Cardozo PW, Calsamiglia S, Ferret A, Kamel C. Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. J Anim Sci. 2004;82:3230-6. doi:10.2527/2004.82113230x.
  42. Mcintosh FM, Williams P, Losa R, Wallace RJ, Newbold CJ, Beever DA. Effects of essential oils on ruminal microorganisms and their protein metabolism effects of essential oils on ruminal microorganisms and their protein metabolism. Appl Environ Microbiol. 2003;69:5011-4. doi:10.1128/AEM.69.8.5011.
  43. Chaves AV, He ML, Yang WZ, Hristov a N, McAllister T a, Benchaar C. Effects of essential oils on proteolytic, deaminative and methanogenic activities of mixed ruminal bacteria. Can J Anim Sci. 2008;88:117-22. doi:10.4141/CJAS07061.
  44. Harris JC, Cottrell SL, Plummer S, Lloyd D. Antimicrobial properties of Allium sativum (garlic). Appl Microbiol Biotechnol. 2001;57:282-6. doi:10.1007/s002530100722.
  45. Reuter HD. Allium sativum and Allium ursinum: part 2- pharmacology and medicinal application. Phytomedicine. 1995;2:73-91. doi:10.1016/S0944-7113(11)80052-8.
  46. Calsamiglia S, Busquet M, Cardozo PW, Castillejos L, Ferret A. Invited review: essential oils as modifiers of rumen microbial fermentation. J Dairy Sci. 2007;90:2580-95. https://doi.org/10.3168/jds.2006-644
  47. Gebhardt R, Beck H. Differential inhibitory effects of garlic-derived organosulfur compounds on cholesterol biosynthesis in primary rat hepatocyte cultures. Lipids. 1996;12:1269-76.
  48. Miller TL, Wolin MJ. Inhibition of growth of methane-producing bacteria of the ruminant forestomach by hydroxymethylglutaryl-SCoA reductase inhibitors. J Dairy Sci. 2001;84:1445-8. doi:10.3168/jds.S0022-0302(01)70177-4.
  49. Martin C, Morgavi D, Doreau M. Methane mitigation in ruminants: from microbe to the farm scale. Animal . 2010;4:351-65. doi:10.1017/S1751731109990620.
  50. Agarwal KC. Therapeutic actions of garlic constituents. Med Res Rev. 1996;16: 111-24. doi:10.1002/(SICI)1098-1128(199601)16:1<111::AID-MED4>3.0CO:2-5.
  51. Kholif SM, Morsy TA, Abdo MM, Matloup OH, El-Ella AAA. Effect of supplementing lactating goats rations with garlic, cinnamon or ginger oils on milk yield, milk composition and milk fatty acids profile. J Life Sci. 2012;4:27-34. https://doi.org/10.1080/09751270.2012.11885191
  52. Eidi A, Eidi M, Esmaeili E. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine. 2006;13: 624-9. doi:10.1016/j.phymed.2005.09.010.
  53. Cherrington AD, Vranic M. Effect of interaction between insulin and glucagon on glucose turnover and FFA concentration in normal and depancreatized dogs. Metabolism. 1974;23:729-44. doi:10.1016/0026-0495(74)90005-5.
  54. Sano H, Takebayashi A, Kodama Y, Nakamura K, Ito H, Arino Y, et al. Effects of feed restriction and cold exposure on glucose metabolism in response to feeding and insulin in sheep. J Anim Sci. 1999;77:2564-73. doi:10.2527/1999.7792564x.
  55. Augusti KT, Sheela CG. Antiperoxide effect of S-allyl cysteine sulfoxide, an insulin secretagogue, in diabetic rats. Experientia. 1996;52:115-9. https://doi.org/10.1007/BF01923354
  56. Liu CT, Hse H, Lii CK, Chen PS, Sheen LY. Effects of garlic oil and diallyl trisulfide on glycemic control in diabetic rats. Eur J Pharmacol. 2005;516: 165-73. doi:10.1016/j.ejphar.2005.04.031.
  57. Amagase H, Petesch BL, Matsuura H, Kasuga S, Itakura Y. Recent advances on the nutritional effects associated with the use of garlic as a supplement. J Nutr. 2001;131:955S-62S. Available from: http://jn.nutrition.org/content/131/3/1120S.full.pdf https://doi.org/10.1093/jn/131.3.955S

Cited by

  1. Yield survey and nutritional evaluation of garlic stalk for ruminant feed vol.59, pp.10, 2017, https://doi.org/10.1186/s40781-017-0147-3
  2. Beneficial Effects of Garlic in Livestock and Poultry Nutrition: A Review vol.8, pp.4, 2019, https://doi.org/10.1007/s40003-018-0390-y
  3. Impacts of Mootral on Methane Production, Rumen Fermentation, and Microbial Community in an in vitro Study vol.7, pp.None, 2017, https://doi.org/10.3389/fvets.2020.623817
  4. Garlic skin induces shifts in the rumen microbiome and metabolome of fattening lambs vol.15, pp.5, 2021, https://doi.org/10.1016/j.animal.2021.100216