DOI QR코드

DOI QR Code

FREDHOLM TOEPLITZ OPERATORS ON THE PLURIHARMONIC DIRICHLET SPACE

  • Lee, Young Joo (Department of Mathematics, Chonnam National University)
  • Received : 2016.11.21
  • Accepted : 2017.04.06
  • Published : 2017.06.25

Abstract

In this paper we consider Toeplitz operators on the pluriharmonic Dirichlet space of the unit ball in the n-dimensional complex space. We then characterize Fredholm Toeplitz operators and describe the essential spectrum of a Toeplitz operator as a consequence.

References

  1. R. Adams, Sobolev Spaces, Academic press, New York, 1975.
  2. G. Cao, Fredholm properties of Toeplitz operators on Dirichlet spaces, Pacific J. Math. 188 (1999) 209-223. https://doi.org/10.2140/pjm.1999.188.209
  3. J. B. Conway, A Course in Operator Theory, Amer. Math. Soc. Providence, Rhode Island, 1999.
  4. R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
  5. Y. J. Lee, Compact sums of Toeplitz products and Toeplitz algebra on the Dirichlet space, Tohoku Math. J., 68 (2016) 253-271. https://doi.org/10.2748/tmj/1466172772
  6. G. McDonald, Fredholm properties of a class of Toeplitz operators on the ball, Indiana Univ. Math. J., 26 (1977) 567-576. https://doi.org/10.1512/iumj.1977.26.26044
  7. W. Rudin, Function Theory in the Unit Ball of ${\mathbb{C}}^n$, Springer-Verlag, New York, 1980.
  8. K. Zhu, Space of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005.