DOI QR코드

DOI QR Code

Fabrication of Hydrocarbon Polymer Electrolyte Composite Membrane Incorporated with Pt Nanopartle for PEMFC and Its Characteristics

Pt 나노 입자가 도입된 연료전지용 탄화수소계 고분자 전해질 복합막의 제조 및 특성

  • LEE, HONGKI (Department of Energy and Electrical Engineering, Woosuk University)
  • 이홍기 (우석대학교 에너지전기공학과)
  • Received : 2017.06.12
  • Accepted : 2017.06.30
  • Published : 2017.06.30

Abstract

To fabricate a hydrocarbon polymer electrolyte composite membrane incorporated with Pt nanoparticle, the polymer electrolyte membrane made of a sulfonated-fluorinated hydrophilic-hydrophobic block copolymer (SFBC) and sulfonated poly (ether ether ketone) (SPEEK) blend in the wight ratio of 1 : 1 was synthesized, and a simple drying process was used in order to incorporate Pt nanoparticle into the SFBC/SPEEK film by reducing platinum (II) bis (acetylacetonate), Pt $(acac)_2$. The distribution of the Pt nanoparticles was observed by transmission electron microscopy (TEM), and mechanical and thermal properties were tested by universal testing machine (UTM) and thermogravimetry analyzer (TGA). Cation conductivity, ion exchange capacity (IEC) and I-V characteristics were estimated.

Keywords

References

  1. D. Aaron, S. Yiacoumi, and C. Tsouris, "Effects of Proton-Exchange Membrane Fuel-Cell Operating Conditions On Charge Transfer Resistances Measured by Electrochemical Impedance Spectroscopy", Separation Science and Technology, Vol. 43, No. 9, 2008, p. 2307. https://doi.org/10.1080/01496390802148613
  2. Y. Sasaki, M. Iijima, T. Osad, K. Miyamoto, and M. Nagai, "Nanostructure with Clusters in Nafion by DSC", International Journal of Thermophysics, Vol. 27, No. 6, 2006, p. 1792. https://doi.org/10.1007/s10765-006-0132-4
  3. K. A. Mauritz and R. B. Moore, "State of Understanding of Nafion", Chem. Rev., Vol. 104, No. 10, 2004, p. 4535. https://doi.org/10.1021/cr0207123
  4. F. P. Orfino and S. Holdcroft, "The Morphology of Nafion: are ion clusters bridged by channels or single ionic sites?", Journal of New Materials for Electrochemical Systems, Vol. 3, No. 4, 2000, p. 287.
  5. J. A. Kerres, "Development of ionomer membranes for fuel cells", J. Membr. Sci., Vol. 185, No. 1, 2001, p. 3. https://doi.org/10.1016/S0376-7388(00)00631-1
  6. M. Rikukawa and K. Sanui, "Proton- conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., Vol. 25, No. 10, 2000, p. 1463. https://doi.org/10.1016/S0079-6700(00)00032-0
  7. L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E. W. Choe, L. S. Ramanathan, S. Yu, and B. C. Benicewicz, "Synthesis and Characterization of Pyridine-Based Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications", Fuel Cells, Vol. 5, No. 2, 2005, p. 287. https://doi.org/10.1002/fuce.200400067
  8. H. J. Kim, S. J. An, J. Y. Kim, J. K. Moon, S. Y. Cho, Y. C. Eun, H. K. Yoon, Y. M. Park, H. J. Kweon, and E. M. Shin, "Polybenzimidazoles for High Temperature Fuel Cell Applications", Macromol Rapid Commun, Vol. 25, No. 15, 2004, p. 1410. https://doi.org/10.1002/marc.200400167
  9. S. W. Chuang and S. L. C. Hsu, "Synthesis and Properties of a New Fluorine- Containing Polybenzimidazole for High-Temperature Fuel-Cell Applications", Journal of Polymer Science. Part A, Polymer Chemistry, Vol. 44, No. 15, 2006, p. 4508. https://doi.org/10.1002/pola.21555
  10. M. B. Satterfield, P. W. Majsztrik, H. Ota, J. B. Benziger, and A. B. Bocarsly, "Mechanical Properties of Nafion and Titania/Nafion Composite Membranes for Polymer Electrolyte Membrane Fuel Cells", J. Polymer Science: Part B. Polymer Physics, Vol. 44, No. 16, 2006, p. 2327. https://doi.org/10.1002/polb.20857
  11. J. Benziger, E. Chia, J. F. Moxley, and I. G. Kevrekidis, "The dynamic response of PEM fuel cells to changes in load", Chemical Engineering Science, Vol. 60, No. 4, 2005, p. 1743. https://doi.org/10.1016/j.ces.2004.10.033
  12. P. Trogadas, J. Parrondo, and V. Ramani, "Degradation Mitigation in Polymer Electrolyte Membranes Using Cerium Oxide as a Regenerative Free-Radical Scavenger", Electrochemical and Solid-State Letters, Vol. 11, No. 7, 2008, p. B113. https://doi.org/10.1149/1.2916443
  13. J. W. Lee, W. S. Kim, and Y. T. Yoo, "Preparation and Actuation Performance of Ionic Polymer-Metal Composite Actuators Based on Nafion-Alumina Composite Membranes", Polymer(Korea), Vol. 33, No. 4, 2009, p. 377.
  14. H. J. Kweon, H. N. Kim, and J. H. Kang, "Improvement of Mechanical Properties of IPMC through Developing a Degree of Dispersion of SWCNT/Nafion Composite", J. Kor. Soc. of Manufacturing Process Engineers, Vol. 10, No. 5, 2011, p. 131.
  15. A. R. Kim, M. Vinothkannan, and D. J. Yoo, "Sulfonated-fluorinated copolymer blending membranes containing SPEEK for use as the electrolyte in polymer electrolyte fuel cells (PEFC)", International J. Hydrogen Energy, Vol. 42, 2017, p. 4349. https://doi.org/10.1016/j.ijhydene.2016.11.161
  16. J. Y. Lee, Y. Liao, R. Nagahata, and S. Horiuchi, "Effect of Metal Nanoparticles on Thermal Stabilization of Polymer/Metal Nanocomposites Prepared by a One-Step Dry Process", Polymer, Vol. 47, No. 23, 2006, p. 7970. https://doi.org/10.1016/j.polymer.2006.09.034
  17. P. Salarizadeh, M. Javanbakht, and S. Pourmahdian, "Enhancing the performance of SPEEK polymer electrolyte membranes using functionalized TiO2 nanoparticles with proton hopping sites", RSC Advances, Vol. 7, 2017, p. 8303. https://doi.org/10.1039/C6RA25959F
  18. J. H. Park, T. E. Kim, S, M. Juon, Y. I. Cho, K, Y. Cho, and Y. G. Shul, "Performance of Modified-Silicon Carbide Fiber Composites Membrane for Polymer Exchange Membrane Fuel Cells", Trans. of the Korean Hydrogen and New Energy society, Vol. 25, 2014, p. 28. https://doi.org/10.7316/KHNES.2014.25.1.028