DOI QR코드

DOI QR Code

Anti-Inflammatory and Anti-allergic Effects of Gnaphalium affine Extract

떡쑥 추출물의 항염증 및 항알러지 효과

  • 노경백 (바이오스펙트럼(주) 생명과학연구소) ;
  • 이정아 (바이오스펙트럼(주) 생명과학연구소) ;
  • 박준호 (스킨큐어(주) 생명과학연구소) ;
  • 정광선 (스킨큐어(주) 생명과학연구소) ;
  • 정은선 (바이오스펙트럼(주) 생명과학연구소) ;
  • 박덕훈 (바이오스펙트럼(주) 생명과학연구소)
  • Received : 2017.03.22
  • Accepted : 2017.05.17
  • Published : 2017.06.30

Abstract

Gnaphalium affine D. DON (GA) has been used as a vegetable as well as a folk medicine in East Asia. The antioxidant and anti-complementary activity of GA extract (GAE) has also been reported. However, little is known about its anti-inflammatory and anti-allergic effect and mechanism of action. In this study, we evaluated the inhibitory effects of GAE on the production of inflammatory mediators such as NO, $PGE_2$, TLR4, eotaxin-1 and histamine. Our results suggest that GAE inhibits the production of NO and $PGE_2$ by inhibiting transcriptional activation via the involvement of iNOS and COX-2. The LPS-induced expression of Toll-like receptor 4 (TLR4) was also attenuated. In addition, GAE inhibited A23187-induced histamine release from MC/9 mast cells. It also inhibited the production of eotaxin-1 induced by IL-4. Collectively, these results suggest that GAE may have considerable potential as a cosmetic ingredient with anti-inflammatory and anti-allergic properties.

떡쑥(Gnaphalium affine D. Don, GA)은 동아시아 지역에서 식용으로 사용되고 있으며, 예로부터 전통적인 민간요법 약재로 사용되어 왔다. 현재 떡쑥 추출물(GA extract, GAE)의 항산화 활성과 항보체 활성 등은 알려져 있으나, 항염과 항알러지 효능 및 그 작용 기작은 자세히 알려져 있지 않다. 본 연구에서는 염증 매개인자인 산화질소, 프로스타글란딘 $E_2$, Toll-유사수용체 4, 에오탁신-1, 히스타민의 활성화에 대한 GAE의 저해효과를 평가하였다. 본 연구를 통해, GAE는 유도성 산화질소 합성효소와 COX-2의 발현을 저해함을 확인하였으며, 이를 통해 산화질소와 프로스타글란딘 $E_2$의 생성을 저해함을 확인하였다. GAE는 LPS로부터 유도된 Toll-유사수용체 4의 발현에도 영향을 미치는 것을 확인하였으며, A23187로부터 유도되는 비만세포의 히스타민 방출의 억제에도 효과적으로 작용하는 것을 확인하였다. 또한 IL-4로부터 유도된 에오탁신-1의 생성도 효과적으로 억제하는 결과를 확인하였다. 이상의 결과로부터 GAE는 항염증과 항알러지 효능을 가진다고 사료되며, 향후 항염증 및 항알러지 화장품 원료로서의 이용가능성을 보였다.

Keywords

References

  1. B. Yu, J. Du, Y. Z. Zhang, and Z. S. Yao, Experimental study on antitussive and expectorant effects of cudweed, J. Zhejiang Univ. Tradit. Chin. Med., 30, 352 (2006).
  2. Z. Xi, W. Chen, Z. Wu, Y. Wang, P. Zeng, G. Zhao, X. Li, and L. Sun, Anti-complementary activity of flavonoids from Gnaphalium affine D. Don, Food Chem., 130(1), 165 (2012). https://doi.org/10.1016/j.foodchem.2011.07.025
  3. M. Morimoto, S. Kumeda, and K. Komai, Insect antifeedant flavonoids from Gnaphalium affine D. Don, J. Agric. Food Chem., 48(5), 1888 (2000). https://doi.org/10.1021/jf990282q
  4. W. C. Zeng, R. X. Zhu, L. R. Jia, H. Gao, Y. Zheng, and Q. Sun, Chemical composition, antimicrobial and antioxidant activities of essential oil from Gnaphlium affine, Food Chem. Toxicol., 49(6), 1322 (2011). https://doi.org/10.1016/j.fct.2011.03.014
  5. G. Rojas, J. Lévaro, J. Tortoriello, and V. Navarro, Antimicrobial evaluation of certain plants used in Mexican traditional medicine for the treatment of respiratory diseases, J. Ethnopharmacol., 74(1), 97 (2001). https://doi.org/10.1016/S0378-8741(00)00349-4
  6. C. D. Dumitru, J. D. Ceci, C. Tsatsanis, D. Kontoyiannis, K. Stamatakis, J. H. Lin, C. Patriotis, N. A. Jenkins, N. G. Copeland, G. Kollias, and P. N. Tsichlis, TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway, Cell, 103(7), 1071 (2000). https://doi.org/10.1016/S0092-8674(00)00210-5
  7. S. Akira, T. Taga, and T. Kishimoto, Interleukin-6 in biology and medicine, Adv. Immunol., 54, 1 (1993).
  8. M. Hartlage-Rubsamen, R. Lemke, and R. Schliebs, Interleukin-1 beta, inducible nitric oxide synthase, and nuclear factor-kappaB are induced in morphologically distinct microglia after rat hippocampal lipopolysaccharide/interferon-gamma injection, J. Neurosci. Res., 57(3), 388 (1999). https://doi.org/10.1002/(SICI)1097-4547(19990801)57:3<388::AID-JNR11>3.0.CO;2-2
  9. C. H. Woo, J. H. Lim, and J. H. Kim, Lipopolysaccharide Induces matrix metalloproteinase-9 expression via a mitochondrial reactive oxygen species-p38 kinase-activator protein-1 pathway in Raw 264.7 cells, J. Immunol., 173(11), 6973 (2004). https://doi.org/10.4049/jimmunol.173.11.6973
  10. S. F. Kim, D. A. Huri, and S. H. Snyder, Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2, Science, 310(5756), 1966 (2005). https://doi.org/10.1126/science.1119407
  11. J. da Silva Correia, K. Soldau, U. Christen, P. S. Tobias, and R. J. Ulevitch, Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex transfer from CD14 to TLR4 and MD-2, J. Biol. Chem., 276(24), 21129 (2001). https://doi.org/10.1074/jbc.M009164200
  12. K. Triantafilou and M. Triantafilou, Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster, Trends Immunol., 23(6), 301 (2002). https://doi.org/10.1016/S1471-4906(02)02233-0
  13. T. Kawai and S. Akira, TLR signaling, Cell Death Differ., 13(5), 816 (2006). https://doi.org/10.1038/sj.cdd.4401850
  14. N. R. Bhat, D. L. Feinstein, Q. Shen, and A. N. Bhat, p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells. Roles of nuclear factors, nuclear factor kappa B, cAMP response element-binding protein, CCAAT/enhancer- binding protein-beta, and activating transcription factor-2, J. Biol. Chem., 277(33), 29584 (2002). https://doi.org/10.1074/jbc.M204994200
  15. C. A. Singer, K. J. Baker, A. McCaffrey, D. P. AuCoin, M. A. Dechert, and W. T. Gerthoffer, p38 MAPK and NF-kappaB mediate COX-2 expression in human airway myocytes, Am. J. Physiol. Lung Cell. Mol. Physiol., 285(5), L1087 (2003). https://doi.org/10.1152/ajplung.00409.2002
  16. K. Amin, The role of mast cells in allergic inflammation. Respir. Med., 106(1), 9 (2012). https://doi.org/10.1016/j.rmed.2011.09.007
  17. P. D. Collins, S. Marleau, D. A. Griffiths-Johnson, P. J. Jose, and T. J. Williams, Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo, J. Exp. Med., 182(4), 1169 (1995). https://doi.org/10.1084/jem.182.4.1169
  18. N. S. Bryan and M. B. Grisham, Methods to detect nitric oxide and its metabolites in biological samples, Free Radic. Biol. Med., 43(5), 645 (2007). https://doi.org/10.1016/j.freeradbiomed.2007.04.026
  19. K. B. Roh, H. Kim, S. Shin, Y. S. Kim, J. A. Lee, M. O. Kim, E. Jung, J. Lee, and D. Park, Anti-inflammatory effects of Zea mays L. husk extracts, BMC Complement. Altern. Med., 16(1), 298 (2016). https://doi.org/10.1186/s12906-016-1284-9
  20. K. B. Roh, I. H. Kim, Y. S. Kim, M. Lee, J. A. Lee, E. Jung, and D. Park, Synephrine inhibits eotaxin-1 expression via the STAT6 signaling pathway, Molecules, 19(8), 11883 (2014). https://doi.org/10.3390/molecules190811883
  21. T. Johansen, Mechanism of histamine release from rat mast cells induced by the ionophore A23187: effects of calcium and temperature, Br. J. Pharmacol., 63(4), 643 (1978). https://doi.org/10.1111/j.1476-5381.1978.tb17277.x
  22. N. McCartney-Francis, J. B. Allen, D. E. Mizel, J. E. Albina, Q. W. Xie, C. F. Nathan, and S. M. Wahl, Suppression of arthritis by an inhibitor of nitric oxide synthase, J. Exp. Med., 178(2), 749 (1993). https://doi.org/10.1084/jem.178.2.749
  23. E. Ricciotti and G. A. FitzGerald, Prostaglandins and inflammation, Arterioscler. Thromb. Vasc. Biol., 31(5), 986 (2011). https://doi.org/10.1161/ATVBAHA.110.207449
  24. B. Kaminska, MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits, Biochim. Biophys. Acta., 1754(1-2), 253 (2005). https://doi.org/10.1016/j.bbapap.2005.08.017
  25. J. C. Chow, D. W. Young, D. T. Golenbock, W. J. Christ, and F. Gusovsky, Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction, J. Biol. Chem., 274(16), 10689 (1999). https://doi.org/10.1074/jbc.274.16.10689
  26. Y. Bellik, S. M. Hammoudi, F. Abdellah, M. Iguer-Ouada, and L. Boukraa, Phytochemicals to prevent inflammation and allergy, Recent Pat. Inflamm. Allergy Drug Discov., 6(2), 147 (2012). https://doi.org/10.2174/187221312800166886
  27. P. Cos, A. J. Vlietinck, D. V. Berghe, and L. Maes, Anti-infective potential of natural products: how to develop a stronger in vitro 'proof-of-concept', J. Ethnopharmacol., 106(3), 290 (2006). https://doi.org/10.1016/j.jep.2006.04.003
  28. J. V. Formica and W. Regelson, Review of the biology of quercetin and related bio-flavonoids, Food Chem. Toxicol., 33(12), 1061 (1995). https://doi.org/10.1016/0278-6915(95)00077-1
  29. S. J. Hwang, Y. W. Kim, Y. Park, H. J. Lee, and K. W. Kim, Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells, Inflamm. Res., 63(1), 81 (2014). https://doi.org/10.1007/s00011-013-0674-4
  30. A. Farah, M. Monteiro, C. M. Donangelo, and S. Lafay, Chlorogenic acids from green coffee extract are highly bioavailable in humans, J. Nutr., 138(12), 2309 (2008). https://doi.org/10.3945/jn.108.095554
  31. H. D. Qin, Y. Q. Shi, Z. H. Liu, Z. G. Li, H. S. Wang, H. Wang, and Z. P. Liu, Effect of chlorogenic acid on mast cell-dependent anaphylactic reaction, Int. Immunopharmacol., 10(9), 1135 (2010). https://doi.org/10.1016/j.intimp.2010.06.018
  32. R. W. Jiang, K. M. Lau, P. M. Hon, T. C. Mak, K. S. Woo, and K. P. Fung, Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza, Curr. Med. Chem., 12(2), 237 (2005). https://doi.org/10.2174/0929867053363397
  33. F. M. da Cunha, D. Duma, J. Assreuy, F. C. Buzzi, R. Niero, M. M. Campos, and J. B. Calixto, Caffeic acid derivatives: in vitro and in vivo anti-inflammatory properties, Free Radic. Res., 38(11), 1241 (2004). https://doi.org/10.1080/10715760400016139
  34. M. A. Hossen, T. Inoue, Y. Shinmei, K. Minami, Y. Fujii, and C. Kamei, Caffeic acid inhibits compound 48/80-induced allergic symptoms in mice, Biol. Pharm. Bull., 29(1), 64 (2006). https://doi.org/10.1248/bpb.29.64
  35. M. Lopez-Lazaro, Distribution and biological activities of the flavonoid luteolin, Mini Rev. Med. Chem., 9(1), 31 (2009). https://doi.org/10.2174/138955709787001712
  36. M. Kimata, N. Inagaki, and H. Nagai, Effects of luteolin and other flavonoids on IgE-mediated allergic reactions, Planta Med., 66(1), 25 (2000). https://doi.org/10.1055/s-2000-11107
  37. J. H. Lee, H. Y. Zhou, S. Y. Cho, Y. S. Kim, Y. S. Lee, and C. S. Jeong, Anti-inflammatory mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules, Arch. Pharm. Res., 30(10), 1318 (2007). https://doi.org/10.1007/BF02980273
  38. R. R. Li, L. L. Pang, Q. Du, Y. Shi, W. J. Dai, and K. S. Yin, Apigenin inhibits allergen-induced airway inflammation and switches immune response in a murine model of asthma, Immunopharmacol. Immunotoxicol., 32(3), 364 (2010). https://doi.org/10.3109/08923970903420566
  39. R. Mogana, K. Teng-Jin, and C. Wiart, Anti-inflammatory, anticholinesterase, and antioxidant potential of scopoletin isolated from Canarium patentinervium Miq. (Burseraceae Kunth), Evid. Based Complement. Alternat. Med., 2013, 734824 (2013).