DOI QR코드

DOI QR Code

Anti-inflammatory Effects of Rebaudioside A in LPS-stimulated RAW264.7 Macrophage Cells

LPS에 의해 자극된 RAW264.7 대식세포에서 Rebaudioside A의 항염 효과

  • Cho, Uk Min (School of Cosmetic Science and Beauty Biotechnology, Semyung University) ;
  • Hwang, Hyung Seo (School of Cosmetic Science and Beauty Biotechnology, Semyung University)
  • 조욱민 (세명대학교 화장품뷰티생명공학부) ;
  • 황형서 (세명대학교 화장품뷰티생명공학부)
  • Received : 2017.05.03
  • Accepted : 2017.06.23
  • Published : 2017.06.30

Abstract

Stevia (Stevia rebaudiana) is a perennial plant of the genus Stevia, originated in South America. It stores many forms of glycosides, mainly stevioside and rebaudioside A, in which steviol is the basic structure. Steviol glycosides, widely used as sweeteners, are superior to sugar in sweetness. Recently, it has been reported that steviol glycosides are involved not only in the skin whitening and anti-inflammatory effect but also in enhancing skin barrier function through tight junction regulation. Thus, we examined anti-inflammatory effect of rebaudioside A and tried to identify its potential for improving atopic dermatitis as cosmetic ingredients. To investigate the anti-inflammatory effect, cell viability and mRNA expression level of inflammation-related cytokines were measured using mouse macrophage RAW264.7 cells. Cell counting kit 8 (CCK-8) assay was carried out to measure cell viability and the maximum concentration without cytotoxicity was set to $250{\mu}M$. A quantitative real-time RT-PCR method was used for the study of the inflammatory suppression of rebaudioside A. Rebaudioside A inhibited expression of inducible nitric oxide synthase (iNOS) up to 47% and COX-2 up to 41% compared to LPS treated condition. NO synthesis was decreased by rebaudioside A. Also, mRNA expression of interleukin (IL)-$1{\alpha}$, IL-$1{\beta}$ and IL-6 in LPS-stimulated RAW264.7 cells was decreased to 40%, 45% and 59%, respectively, as a concentration-dependent manner. In conclusion, rebaudioside A inhibited the inflammatory response by regulation of cytokine gene expression. From these results, we expect that steviol glycoside, such as rebaudioside A, can be used as a material for improving atopic dermatitis in the future.

스테비아(Stevia rebaudiana)는 남아메리카 지역이 원산지인 국화과 스테비아 속의 다년생 식물로 스테비올(steviol)을 기본 구조로 하는 다양한 배당체가 존재하며 스테비오사이드(stevioside)와 리바우디오사이드(rebaudioside) A 등이 주성분이다. 스테비올 배당체들은 설탕보다 단맛이 월등히 뛰어나 감미료로 널리 사용되어지고 있다. 최근 여러 논문들에서 스테비올 배당체들이 미백 및 항염 효과 뿐 아니라 피부장벽 타이트정션 단백질 조절에 연관되어 있다는 보고가 있었다. 따라서 본 연구에서는 스테비올 배당체인 리바우디오사이드 A의 항염 효과 연구를 통해 향후 아토피 피부염 개선 화장품 원료 개발 가능성을 확인하고자 하였다. 항염 연구를 위해 마우스 대식세포인 RAW264.7 세포를 이용하여 cell viability 및 염증 유발 사이토카인 mRNA 발현량을 분석하였다. 우선 cell viability 측정을 위해 cell counting kit-8 (CCK-8) assay를 수행하였고 세포독성이 없는 최대 농도를 $250{\mu}M$로 설정하여 이후 모든 실험을 진행하였다. 리바우디오사이드 A의 염증 조절 기능 연구는 주로 정량적 real-time RT-PCR 방법을 이용하였다. LPS에 의해 활성화된 RAW264.7 대식세포에서 리바우디오사이드 A 처리 결과 LPS 처리군 대비 iNOS 발현량은 약 47% 감소하였고, COX-2 또한 41% 감소하였다. 생성된 NO의 양 또한 농도 의존적으로 감소하였다. 대식세포를 LPS로 활성화시킨 조건에서 염증 관련 사이토카인 유전자인 interleukin (IL)-$1{\alpha}$, IL-$1{\beta}$, IL-6의 발현량 조절을 확인한 결과 사이토카인(IL-$1{\alpha}$, $1{\beta}$, 6) 발현이 LPS 처리군 대비 40%, 45%, 59%로 농도 의존적 유의성 있게 감소하였다. 결론적으로 스테비올 배당체인 리바우디오사이드 A는 NO 생성 및 사이토카인 분비 억제를 통해 염증 반응을 저해하였다. 이러한 리바우디오사이드 A의 신규 항염증 조절 기능을 통해 아토피성피부염 개선 소재로의 개발이 기대된다.

Keywords

References

  1. S. K. Goyal, Samsher, and R. K. Goyal, Stevia (Stevia rebaudiana) a bio-sweetener: a review, Int. J. Food Sci. & Nutr., 61(1), 1 (2010). https://doi.org/10.3109/09637480903193049
  2. A. S. Dacome, C. C. Da Silva, C. E. Da Costa, J. D. Fontana, J. Adelmann, and S. C. Da Costa, Sweet diterpenic glycosides balance of a new cultivar of Stevia rebaudiana (Bert.) Bertoni: isolation and quantitative distribution by chromatographic, spectroscopic, and electrophoretic methods, Proc. Biochem., 40(11), 3587 (2005). https://doi.org/10.1016/j.procbio.2005.03.035
  3. H. Misra, M. Soni, N. Silawat, D. Mehta, B. K. Mehta, and D. C. Jain, Antidiabetic acitivity of medium- polar extract from the leaves of Stevia rebaudiana Bert. (Bertoni) on alloxan-induced diabetic rats. J. Pharm. & Bio. Sci., 3(2), 242 (2011). https://doi.org/10.4103/0975-7406.80779
  4. K. Philippaert, A. Pironet, M. Mesuere, W. Sones, L. Vermeiren, S. Kerselaers, S. Pinto, A. Segal, N. Antoine, C. Gysemans, J. Laureys, K. Lemaire, P. Gilon, E. Cuypers, J. Tytgat, C. Mathieu, F. Schuit, P. Rorsman, K. Talavera, T. Voets, and R. Vennekens, Steviol glycosides enhance pancreatic beta- cell function and taste sensation by potentiation of TRPM5 channel activity. Nat. Commun., 8 (2017).
  5. L. Fengyang, F. Yunhe, L. Bo, L. Zhicheng, L. Depeng, L. Edjie, Z. Wen, C. Yongguo, Z. Naisheng, Z. Xichen, and Y. Zhengtao, Stevioside suppressed inflammatory cytokine secretion by downregulation of NF-${\kappa}B$ and MAPK signaling pathways in LPS-stimulated RAW264.7 cells, Inflammation, 35(5), 1669 (2012). https://doi.org/10.1007/s10753-012-9483-0
  6. S. Y. Kim, M. J. Jo, M. H. Hwangbo, Y. D. Back, T. Y. Jeong, I. J. Cho, and S. Y. Jee, Anti-inflammatory effect of Stevia rebaudiana as a results of NF-${\kappa}B$ and MAPK inhibition, J. Kor. Med. Opthal. & Otolaryngol. & Dermatol., 26(3), 54 (2013). https://doi.org/10.6114/jkood.2013.26.3.054
  7. S. K. Choi, N. J. Cho, U. M. Cho, J. H. Shim, K. K. Kim, and H. S. Hwang, Inhibitory effect of steviol and its derivatives on cell migration via regulation of tight junction-related protein claudin 8, J. Soc. Cosmet. Sci. Korea, 42, 403 (2016).
  8. H. J. Kim, J. U. Shin, and K. H. Lee, Atopic dermatitis and skin barrier dysfunction, Allergy Asthma & Respir. Dis., 1(1), 20 (2013). https://doi.org/10.4168/aard.2013.1.1.20
  9. C. L. Chaffer and R. A. Weinberg, A perspective on cancer cell metastasis, Science, 331(6024), 1559 (2011). https://doi.org/10.1126/science.1203543
  10. T. Bieber, Atopic dermatitis, N. Engl. J. Med., 356, 1483 (2008).
  11. M. Boguniewicz and D. Y. M. Leung, Atopic dermatitis: a disease of altered skin barrier and immune dysregulation, Immunol. Rev., 242(1), 233 (2011). https://doi.org/10.1111/j.1600-065X.2011.01027.x
  12. E. H. Choi, Skin barrier related pathogenesis and its clinical application in atopic dermatitis, Kor. Acad. Asthma Allergy Clin. Immunol., 573 (2012).
  13. A. De Benedetto, N. M. Rafaels, L. Y. McGirt, A. I. Ivanov, S. N. Georas, C. Cheadle, and M. Boguniewicz, Tight junction defects in patients with atopic dermatitis, J. Allergy Clin. Immunol., 127(3), 773 (2011). https://doi.org/10.1016/j.jaci.2010.10.018
  14. Nilesh Morar, Saffron A.G. Willis-Owen, Miriam F. Moffatt, and William O. C. M. Cookson, The genetics of atopic dermatitis, J. Allergy Clin. Immunol., 118, 24 (2006). https://doi.org/10.1016/j.jaci.2006.03.037
  15. H. Rossiter, F. Van Reijsen, G. C. Mudde, F. Kalthoff, A. F. M. Carla, L. J. Picker, and T. S. Kupper, Skin disease-related T cells bind to endothe lial selectins: expression of cutaneous lymphocyte antigen (CLA) predicts E-selectin but not P-selectin binding, Eur. J. Immunol., 24(1), 205 (1994). https://doi.org/10.1002/eji.1830240132
  16. J. W. Kim, Review: Atopic dermatitis from an allergic and immunological point of view, Kor. J. Dermatol., 46(6), 687 (2003).
  17. E. E. Aeberhard, S. A. Henderson, N. S. Arabolos, J. M. Griscavage, F. E. Castro, C. T. Barrett, and L. J. Ignarro, Nonsteroidal anti-inflammatory drugs inhibit expression of the inducible nitric oxide synthase gene, Biochem. Biophys. Res. Commun., 208(3), 1053 (1995). https://doi.org/10.1006/bbrc.1995.1441
  18. D Salvemini, T. P. Misko, J. L. Masferrer, K. Seibert, M. G. Currie, and P. Needleman, Nitric oxide activates cyclooxygenase enzymes, Proc. Natl. Acad. Sci. USA., 90(15), 7240 (1993). https://doi.org/10.1073/pnas.90.15.7240
  19. M. Ishiyama, Y. Miyazono, K. Sasamoto, Y. Ohkura, and K. Ueno, A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability, Talanta, 44(7), 1299 (1997). https://doi.org/10.1016/S0039-9140(97)00017-9
  20. L. C. Green, D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, and S. R. Tannenbaum, Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids, Anal. Biochem., 126(1), 131 (1982). https://doi.org/10.1016/0003-2697(82)90118-X
  21. J. MacMicking, Q. W. Xie, and C. Nathan, Nitric oxide and macrophage function, Annu. Rev. Immunol., 15, 323 (1997). https://doi.org/10.1146/annurev.immunol.15.1.323
  22. M. E. Turini and R. N. DuBois, Cyclooxygenase-2: a therapeutic target. Annu. Rev. Med., 53, 35 (2002). https://doi.org/10.1146/annurev.med.53.082901.103952