DOI QR코드

DOI QR Code

Epigenetics: Linking Nutrition to Molecular Mechanisms in Aging

  • Park, Joo Hyun (Metabolism and Epigenetics Laboratory, Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Yoo, Yeongran (Metabolism and Epigenetics Laboratory, Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Park, Yoon Jung (Metabolism and Epigenetics Laboratory, Department of Nutritional Science and Food Management, Ewha Womans University)
  • Received : 2017.01.18
  • Accepted : 2017.03.07
  • Published : 2017.06.30

Abstract

Healthy aging has become a major goal of public health. Many studies have provided evidence and theories to explain molecular mechanisms of the aging process. Recent studies suggest that epigenetic mechanisms are responsible for life span and the progression of aging. Epigenetics is a fascinating field of molecular biology, which studies heritable modifications of DNA and histones that regulate gene expression without altering the DNA sequence. DNA methylation is a major epigenetic mark that shows progressive changes during aging. Recent studies have investigated aging-related DNA methylation as a biomarker that predicts cellular age. Interestingly, growing evidence proposes that nutrients play a crucial role in the regulation of epigenetic modifiers. Because various nutrients and their metabolites function as substrates or cofactors for epigenetic modifiers, nutrition can modulate or reverse epigenetic marks in the genome as well as expression patterns. Here, we will review the results on aging-associated epigenetic modifications and the possible mechanisms by which nutrition, including nutrient availability and bioactive compounds, regulate epigenetic changes and affect aging physiology.

Keywords

References

  1. Karasik D, Demissie S, Cupples LA, Kiel DP. 2005. Disentangling the genetic determinants of human aging: biological age as an alternative to the use of survival measures. J Gerontol A Biol Sci Med Sci 60: 574-587. https://doi.org/10.1093/gerona/60.5.574
  2. Deelen J, Beekman M, Uh HW, Broer L, Ayers KL, Tan Q, Kamatani Y, Bennet AM, Tamm R, Trompet S, Guobjartsson DF, Flachsbart F, Rose G, Viktorin A, Fischer K, Nygaard M, Cordell HJ, Crocco P, van den Akker EB, Bohringer S, Helmer Q, Nelson CP, Saunders GI, Alver M, Andersen-Ranberg K, Breen ME, van der Breggen R, Caliebe A, Capri M, Cevenini E, Collerton JC, Dato S, Davies K, Ford I, Gampe J, Garagnani P, de Geus EJ, Harrow J, van Heemst D, Heijmans BT, Heinsen FA, Hottenga JJ, Hofman A, Jeune B, Jonsson PV, Lathrop M, Lechner D, Martin-Ruiz C, Mcnerlan SE, Mihailov E, Montesanto A, Mooijaart SP, Murphy A, Nohr EA, Paternoster L, Postmus I, Rivadeneira F, Ross OA, Salvioli S, Sattar N, Schreiber S, Stefansson H, Stott DJ, Tiemeier H, Uitterlinden AG, Westendorp RG, Willemsen G, Samani NJ, Galan P, Sorensen TI, Boomsma DI, Jukema JW, Rea IM, Passarino G, de Craen AJ, Christensen K, Nebel A, Stefánsson K, Metspalu A, Magnusson P, Blanche H, Christiansen L, Kirkwood TB, van Duijn CM, Franceschi C, Houwing-Duistermaat JJ, Slagboom PE. 2014. Genomewide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age. Hum Mol Genet 23: 4420-4432. https://doi.org/10.1093/hmg/ddu139
  3. Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K, Masaki KH, Willcox DC, Rodriguez B, Curb JD. 2008. FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci USA 105: 13987-13992. https://doi.org/10.1073/pnas.0801030105
  4. Nebel A, Flachsbart F, Till A, Caliebe A, Blanche H, Arlt A, Hasler R, Jacobs G, Kleindorp R, Franke A, Shen B, Nikolaus S, Krawczak M, Rosenstiel P, Schreiber S. 2009. A functional EXO1 promoter variant is associated with prolonged life expectancy in centenarians. Mech Ageing Dev 130: 691-699. https://doi.org/10.1016/j.mad.2009.08.004
  5. Han J, Ryu S, Moskowitz DM, Rothenberg D, Leahy DJ, Atzmon G, Barzilai N, Suh Y. 2013. Discovery of novel nonsynonymous SNP variants in 988 candidate genes from 6 centenarians by target capture and next-generation sequencing. Mech Ageing Dev 134: 478-485. https://doi.org/10.1016/j.mad.2013.01.005
  6. Wellen KE, Thompson CB. 2010. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell 40: 323-332. https://doi.org/10.1016/j.molcel.2010.10.004
  7. Phillips CM. 2013. Nutrigenetics and metabolic disease: current status and implications for personalised nutrition. Nutrients 5: 32-57. https://doi.org/10.3390/nu5010032
  8. McKay JA, Mathers JC. 2011. Diet induced epigenetic changes and their implications for health. Acta Physiol 202: 103-118. https://doi.org/10.1111/j.1748-1716.2011.02278.x
  9. Mimitou EP, Symington LS. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455: 770-774. https://doi.org/10.1038/nature07312
  10. Chen L, Huang S, Lee L, Davalos A, Schiestl RH, Campisi J, Oshima J. 2003. WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell 2: 191-199. https://doi.org/10.1046/j.1474-9728.2003.00052.x
  11. de Boer J, Andressoo JO, de Wit J, Huijmans J, Beems RB, van Steeg H, Weeda G, van der Horst GT, van Leeuwen W, Themmen AP, Meradji M, Hoeijmakers JH. 2002. Premature aging in mice deficient in DNA repair and transcription. Science 296: 1276-1279. https://doi.org/10.1126/science.1070174
  12. Fraga MF. 2009. Genetic and epigenetic regulation of aging. Curr Opin Immunol 21: 446-453. https://doi.org/10.1016/j.coi.2009.04.003
  13. Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW. 2005. DNA repair, genome stability, and aging. Cell 120: 497-512. https://doi.org/10.1016/j.cell.2005.01.028
  14. Tomas-Loba A, Flores I, Fernandez-Marcos PJ, Cayuela ML, Maraver A, Tejera A, Borras C, Matheu A, Klatt P, Flores JM, Vina J, Serrano M, Blasco MA. 2008. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 135: 609-622. https://doi.org/10.1016/j.cell.2008.09.034
  15. Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, DePinho RA. 1999. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96: 701-712. https://doi.org/10.1016/S0092-8674(00)80580-2
  16. Holliday R. 1987. The inheritance of epigenetic defects. Science 238: 163-170. https://doi.org/10.1126/science.3310230
  17. Niculescu MD, Lupu DS. 2011. Nutritional influence on epigenetics and effects on longevity. Curr Opin Clin Nutr Metab Care 14: 35-40. https://doi.org/10.1097/MCO.0b013e328340ff7c
  18. Reik W. 2007. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447: 425-432. https://doi.org/10.1038/nature05918
  19. Horvath S. 2013. DNA methylation age of human tissues and cell types. Genome Biol 14: R115. https://doi.org/10.1186/gb-2013-14-10-r115
  20. Doskocil J, Sorm F. 1962. Distribution of 5-methylcytosine in pyrimidine sequences of deoxyribonucleic acids. Biochim Biophys Acta 55: 953-959. https://doi.org/10.1016/0006-3002(62)90909-5
  21. Eden A, Gaudet F, Waghmare A, Jaenisch R. 2003. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300: 455. https://doi.org/10.1126/science.1083557
  22. Wilson VL, Smith RA, Ma S, Cutler RG. 1987. Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem 262: 9948-9951.
  23. Barbot W, Dupressoir A, Lazar V, Heidmann T. 2002. Epigenetic regulation of an IAP retrotransposon in the aging mouse: progressive demethylation and de-silencing of the element by its repetitive induction. Nucleic Acids Res 30: 2365-2373. https://doi.org/10.1093/nar/30.11.2365
  24. Putiri EL, Robertson KD. 2011. Epigenetic mechanisms and genome stability. Clin Epigenetics 2: 299-314. https://doi.org/10.1007/s13148-010-0017-z
  25. Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, Puca AA, Sayols S, Pujana MA, Serra-Musach J, Iglesias-Platas I, Formiga F, Fernandez AF, Fraga MF, Heath SC, Valencia A, Gut IG, Wang J, Esteller M. 2012. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci USA 109: 10522-10527. https://doi.org/10.1073/pnas.1120658109
  26. Florath I, Butterbach K, Müller H, Bewerunge-Hudler M, Brenner H. 2014. Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet 23: 1186-1201. https://doi.org/10.1093/hmg/ddt531
  27. Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, Blasco MA. 2006. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8: 416-424. https://doi.org/10.1038/ncb1386
  28. Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB. 1994. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet 7: 536-540. https://doi.org/10.1038/ng0894-536
  29. Choi EK, Uyeno S, Nishida N, Okumoto T, Fujimura S, Aoki Y, Nata M, Sagisaka K, Fukuda Y, Nakao K, Yoshimoto T, Kim YS, Ono T. 1996. Alterations of c-fos gene methylation in the processes of aging and tumorigenesis in human liver. Mutat Res 354: 123-128. https://doi.org/10.1016/0027-5107(96)00056-5
  30. Waki T, Tamura G, Sato M, Motoyama T. 2003. Age-related methylation of tumor suppressor and tumor-related genes: an analysis of autopsy samples. Oncogene 22: 4128-4133. https://doi.org/10.1038/sj.onc.1206651
  31. Zhang Z, Deng C, Lu Q, Richardson B. 2002. Age-dependent DNA methylation changes in the ITGAL (CD11a) promoter. Mech Ageing Dev 123: 1257-1268. https://doi.org/10.1016/S0047-6374(02)00014-3
  32. Casillas MA Jr, Lopatina N, Andrews LG, Tollefsbol TO. 2003. Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically-transformed human fibroblasts. Mol Cell Biochem 252: 33-43. https://doi.org/10.1023/A:1025548623524
  33. McClay JL, Aberg KA, Clark SL, Nerella S, Kumar G, Xie LY, Hudson AD, Harada A, Hultman CM, Magnusson PK, Sullivan PF, Van Den Oord EJ. 2014. A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum Mol Genet 23: 1175-1185. https://doi.org/10.1093/hmg/ddt511
  34. Russell SJ, Kahn CR. 2007. Endocrine regulation of ageing. Nat Rev Mol Cell Biol 8: 681-691. https://doi.org/10.1038/nrm2234
  35. Longo VD, Kennedy BK. 2006. Sirtuins in aging and age-related disease. Cell 126: 257-268. https://doi.org/10.1016/j.cell.2006.07.002
  36. Kaeberlein M, McVey M, Guarente L. 1999. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13: 2570-2580. https://doi.org/10.1101/gad.13.19.2570
  37. Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, Kaeberlein M, Kennedy BK, Berger SL. 2009. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459: 802-807. https://doi.org/10.1038/nature08085
  38. Hachinohe M, Hanaoka F, Masumoto H. 2011. Hst3 and Hst4 histone deacetylases regulate replicative lifespan by preventing genome instability in Saccharomyces cerevisiae. Genes Cells 16: 467-477. https://doi.org/10.1111/j.1365-2443.2011.01493.x
  39. Sommer M, Poliak N, Upadhyay S, Ratovitski E, Nelkin BD, Donehower LA, Sidransky D. 2006. ${\Delta}Np63&alpha$ overexpression induces downregulation of Sirt1 and an accelerated aging phenotype in the mouse. Cell Cycle 5: 2005-2011. https://doi.org/10.4161/cc.5.17.3194
  40. Caron AZ, He X, Mottawea W, Seifert EL, Jardine K, Dewar- Darch D, Cron GO, Harper ME, Stintzi A, McBurney MW. 2014. The SIRT1 deacetylase protects mice against the symptoms of metabolic syndrome. FASEB J 28: 1306-1316. https://doi.org/10.1096/fj.13-243568
  41. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW. 2006. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124: 315-329. https://doi.org/10.1016/j.cell.2005.11.044
  42. Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TL, Barrett JC, Chang HY, Bohr VA, Ried T, Gozani O, Chua KF. 2008. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452: 492-496. https://doi.org/10.1038/nature06736
  43. Yuan J, Pu M, Zhang Z, Lou Z. 2009. Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle 8: 1747-1753. https://doi.org/10.4161/cc.8.11.8620
  44. Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M, McCord RA, Ongaigui KC, Boxer LD, Chang HY, Chua KF. 2009. SIRT6 links histone H3 lysine 9 deacetylation to NF-${\kappa}B$-dependent gene expression and organismal life span. Cell 136: 62-74. https://doi.org/10.1016/j.cell.2008.10.052
  45. Sarg B, Koutzamani E, Helliger W, Rundquist I, Lindner HH. 2002. Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J Biol Chem 277: 39195-39201. https://doi.org/10.1074/jbc.M205166200
  46. Happel N, Doenecke D, Sekeri-Pataryas KE, Sourlingas TG. 2008. H1 histone subtype constitution and phosphorylation state of the ageing cell system of human peripheral blood lymphocytes. Exp Gerontol 43: 184-199. https://doi.org/10.1016/j.exger.2007.11.008
  47. Jin C, Li J, Green CD, Yu X, Tang X, Han D, Xian B, Wang D, Huang X, Cao X, Yan Z, Hou L, Liu J, Shukeir N, Khaitovich P, Chen CD, Zhang H, Jenuwein T, Han JD. 2011. Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab 14: 161-172. https://doi.org/10.1016/j.cmet.2011.07.001
  48. Tissenbaum HA, Guarente L. 2001. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410: 227-230. https://doi.org/10.1038/35065638
  49. Masoro EJ. 2003. Subfield history: caloric restriction, slowing aging, and extending life. Sci Aging Knowl Environ 2003: re2.
  50. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R. 2009. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325: 201-204.
  51. Fontana L, Meyer TE, Klein S, Holloszy JO. 2004. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA 101: 6659-6663. https://doi.org/10.1073/pnas.0308291101
  52. Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson- Meyer DE, Rood J, Nguyen T, Martin CK, Volaufova J, Most MM, Greenway FL, Smith SR, Deutsch WA, Williamson DA, Ravussin E; Pennington CALERIE Team. 2006. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 295: 1539-1548. https://doi.org/10.1001/jama.295.13.1539
  53. Oh WJ, Jacinto E. 2011. mTOR complex 2 signaling and functions. Cell Cycle 10: 2305-2316. https://doi.org/10.4161/cc.10.14.16586
  54. Yan L, Mieulet V, Lamb RF. 2010. Nutrient regulation of mTORC1 and cell growth. Cell Cycle 9: 2473-2474. https://doi.org/10.4161/cc.9.13.12124
  55. Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149: 274-293. https://doi.org/10.1016/j.cell.2012.03.017
  56. Hay N, Sonenberg N. 2004. Upstream and downstream of mTOR. Genes Dev 18: 1926-1945. https://doi.org/10.1101/gad.1212704
  57. Silver N, Proctor GB, Arno M, Carpenter GH. 2010. Activation of mTOR coincides with autophagy during ligation-induced atrophy in the rat submandibular gland. Cell Death Dis 1: e14. https://doi.org/10.1038/cddis.2009.12
  58. Bennett HL, Fleming JT, O’Prey J, Ryan KM, Leung HY. 2010. Androgens modulate autophagy and cell death via regulation of the endoplasmic reticulum chaperone glucose-regulated protein 78/BiP in prostate cancer cells. Cell Death Dis 1: e72. https://doi.org/10.1038/cddis.2010.50
  59. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. 1999. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672-676. https://doi.org/10.1038/45257
  60. Chen C, Yu R, Owuor ED, Kong AN. 2000. Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch Pharm Res 23: 605-612. https://doi.org/10.1007/BF02975249
  61. Chen D, Guarente L. 2007. SIR2: a potential target for calorie restriction mimetics. Trends Mol Med 13: 64-71. https://doi.org/10.1016/j.molmed.2006.12.004
  62. Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, Moffat C, Crawford S, Saliba S, Jardine K, Xuan J, Evans M, Harper ME, McBurney MW. 2008. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 3: e1759. https://doi.org/10.1371/journal.pone.0001759
  63. Blagosklonny MV. 2010. Linking calorie restriction to longevity through sirtuins and autophagy: any role for TOR. Cell Death Dis 1: e12. https://doi.org/10.1038/cddis.2009.17
  64. Stein S, Matter CM. 2011. Protective roles of SIRT1 in atherosclerosis. Cell Cycle 10: 640-647. https://doi.org/10.4161/cc.10.4.14863
  65. Wakeling LA, Ions LJ, Ford D. 2009. Could Sirt1-mediated epigenetic effects contribute to the longevity response to dietary restriction and be mimicked by other dietary interventions?. AGE 31: 327-341. https://doi.org/10.1007/s11357-009-9104-5
  66. Dirks AJ, Leeuwenburgh C. 2006. Tumor necrosis factor alpha signaling in skeletal muscle: effects of age and caloric restriction. J Nutr Biochem 17: 501-508. https://doi.org/10.1016/j.jnutbio.2005.11.002
  67. Smoliga JM, Baur JA, Hausenblas HA. 2011. Resveratrol and health - a comprehensive review of human clinical trials. Mol Nutr Food Res 55: 1129-1141. https://doi.org/10.1002/mnfr.201100143
  68. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA. 2006. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444: 337-342. https://doi.org/10.1038/nature05354
  69. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. 2006. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and $PGC-1{\alpha}$. Cell 127: 1109-1122. https://doi.org/10.1016/j.cell.2006.11.013
  70. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA. 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191-196. https://doi.org/10.1038/nature01960
  71. Baur JA. 2010. Resveratrol, sirtuins, and the promise of a DR mimetic. Mech Ageing Dev 131: 261-269. https://doi.org/10.1016/j.mad.2010.02.007
  72. Cantó C, Auwerx J. 2012. Targeting sirtuin 1 to improve metabolism: all you need is $NAD^{+}$?. Pharmacol Rev 64: 166-187. https://doi.org/10.1124/pr.110.003905
  73. Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu D, Kersten S, Moonen-Kornips E, Hesselink MK, Kunz I, Schrauwen-Hinderling VB, Blaak EE, Auwerx J, Schrauwen P. 2011. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14: 612-622. https://doi.org/10.1016/j.cmet.2011.10.002
  74. Halliwell B. 2007. Dietary polyphenols: good, bad, or indifferent for your health?. Cardiovasc Res 73: 341-347. https://doi.org/10.1016/j.cardiores.2006.10.004
  75. Um JH, Park SJ, Kang H, Yang S, Foretz M, McBurney MW, Kim MK, Viollet B, Chung JH. 2010. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59: 554-563. https://doi.org/10.2337/db09-0482
  76. Canto C, Auwerx J. 2010. AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol Life Sci 67: 3407-3423. https://doi.org/10.1007/s00018-010-0454-z
  77. McWalter GK, Higgins LG, McLellan LI, Henderson CJ, Song L, Thornalley PJ, Itoh K, Yamamoto M, Hayes JD. 2004. Transcription factor Nrf2 is essential for induction of NAD(P)H: quinone oxidoreductase 1, glutathione S-transferases, and glutamate cysteine ligase by broccoli seeds and isothiocyanates. J Nutr 134: 3499S-3506S. https://doi.org/10.1093/jn/134.12.3499S
  78. Meeran SM, Patel SN, Tollefsbol TO. 2010. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One 6: e11457.
  79. Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS. 2003. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylationsilenced genes in cancer cell lines. Cancer Res 63: 7563-7570.
  80. Berletch JB, Liu C, Love WK, Andrews LG, Katiyar SK, Tollefsbol TO. 2008. Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J Cell Biochem 103: 509-519. https://doi.org/10.1002/jcb.21417
  81. Ruiz PA, Braune A, Holzlwimmer G, Quintanilla-Fend L, Haller D. 2007. Quercetin inhibits TNF-induced NF${\kappa}B$ transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells. J Nutr 137: 1208-1215. https://doi.org/10.1093/jn/137.5.1208
  82. Fang MZ, Chen D, Sun Y, Jin Z, Christman JK, Yang CS. 2005. Reversal of hypermethylation and reactivation of $p16^{INK4a}$, $RAR{\beta}$, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11: 7033-7041. https://doi.org/10.1158/1078-0432.CCR-05-0406

Cited by

  1. Overexpression of Kcnmb2 in Dorsal CA1 of Offspring Mice Rescues Hippocampal Dysfunction Caused by a Methyl Donor-Rich Paternal Diet vol.12, pp.1662-5102, 2018, https://doi.org/10.3389/fncel.2018.00360
  2. Physiological and Molecular Mechanisms of Methionine Restriction vol.9, pp.1664-2392, 2018, https://doi.org/10.3389/fendo.2018.00217
  3. A Polyphenol-Enriched Supplement Exerts Potent Epigenetic-Protective Activity in a Cell-Based Model of Brain Ischemia vol.11, pp.2, 2019, https://doi.org/10.3390/nu11020345
  4. Sulforaphane: Its “Coming of Age” as a Clinically Relevant Nutraceutical in the Prevention and Treatment of Chronic Disease vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/2716870
  5. Interaction Among Sex, Aging, and Epigenetic Processes Concerning Visceral Fat, Insulin Resistance, and Dyslipidaemia vol.10, pp.None, 2017, https://doi.org/10.3389/fendo.2019.00496
  6. Methyl Donor Micronutrients that Modify DNA Methylation and Cancer Outcome vol.11, pp.3, 2017, https://doi.org/10.3390/nu11030608
  7. Stem Cell Aging in Lifespan and Disease: A State-of-the-Art Review vol.15, pp.None, 2020, https://doi.org/10.2174/1574888x15666200213105155
  8. Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review vol.22, pp.9, 2017, https://doi.org/10.3390/ijms22095047
  9. Betaine host-guest complexation with a calixarene receptor: enhanced in vitro anticancer effect vol.11, pp.40, 2021, https://doi.org/10.1039/d1ra04614d
  10. Mediterranean diet and the hallmarks of ageing vol.75, pp.8, 2017, https://doi.org/10.1038/s41430-020-00841-x
  11. Epidemiological and genetic overlap among biological aging clocks: New challenges in biogerontology vol.72, pp.None, 2017, https://doi.org/10.1016/j.arr.2021.101502