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I. INTRODUCTION 
 

Development of optimized implementation of the 

underlying mathematical operations in cryptographic 

techniques is an integral part of information security. Among 

the public key cryptographic techniques, pairing-based 

cryptography is comparatively a new branch of cryptographic 

research which generally deals with a specific algorithm with 

some certain characteristics. In general, pairing is a bilinear 

map from two additive rational point groups 𝔾1 and 𝔾2 to 

a multiplicative group 𝔾3 [2], typically denoted by 

𝔾1 × 𝔾2 → 𝔾3. In practice, pairing is realized by the elliptic 

curves defined over the extension field. 

Implementation of a pairing requires special elliptic curve 

usually known pairing-friendly curves. This paper considers 

a well-studied non-supersingular pairing-friendly curve 

named Kachisa-Schaefer-Scott (KSS) curve [3] of the 

embedding degree 𝑘 ≥ 16. It means pairing needs to be 

calculated in extension field of degree 𝑘 ≥ 16. Thanks to 

the isomorphic twist property of the KSS curve which 

allows to calculate the pairing and the related operations in 

lower degree extension field that makes calculation more 

efficient. This paper focuses on the explicit derivation and 

implementation of this twist property for KSS curve of 

embedding degree 𝑘 = 16 and 𝑘 = 18 named KSS16 and 

KSS18, respectively throughout this paper. 
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Abstract 

Implementation of faster pairing calculation is the basis of efficient pairing-based cryptographic protocol implementation. 

Generally, pairing is a costly operation carried out over the extension field of degree 𝒌 ≥ 𝟏𝟐. But the twist property of the 

pairing friendly curve allows us to calculate pairing over the sub-field twisted curve, where the extension degree becomes 

𝒌/𝒅 and twist degree 𝒅 =  𝟐, 𝟑, 𝟒, 𝟔. The calculation cost is reduced substantially by twisting but it makes the discrete 

logarithm problem easier if the curve parameters are not carefully chosen. Therefore, this paper considers the most recent 

parameters setting presented by Barbulescu and Duquesne [1] for pairing-based cryptography; that are secure enough for 128-

bit security level; to explicitly show the quartic twist (𝒅 =  𝟒) and sextic twist (𝒅 =  𝟔) mapping between the isomorphic 

rational point groups for KSS (Kachisa-Schaefer-Scott) curve of embedding degree 𝒌 = 𝟏𝟔 and 𝒌 = 𝟏𝟖, receptively. This 

paper also evaluates the performance enhancement of the obtained twisted mapping by comparing the elliptic curve scalar 

multiplications. 
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The advantage of the derived isomorphic twisted mapping 

is examined by performing elliptic curve scalar 

multiplication on 𝔾2 ⊂ 𝐸(𝔽𝑝𝑘) rational point, since scalar 

multiplication is required repeatedly in cryptographic 

calculation. Three well-known scalar multiplication algorithms 

are considered for the comprehensive experimental 

implementation named as binary method, Montgomery 

ladder and sliding-window method. 

The experimental result in Section IV shows that a scalar 

multiplication of rational point in 𝔾2 point is accelerated by 

10 to 20 times by applying the mapping technique given in 

Section III for both KSS16 and KSS18 curve. The result 

also shows that the sextic twist of KSS18 is faster than the 

quartic twist of the KSS16 curve (In CRYPTO’16, Kim and 

Barbulescu [4] proposed a new ECDLP attack which 

requires to update pairing-friendly curve parameters. 

Therefore, this paper uses the most recent parameters 

proposed by Barbulescu and Duquesne [1]). 

 

II. BACKGROUND 
 

The background studies required for the system model is 

briefly discussed in this section. 

 

A. Elliptic Curve [5] 
 

Let 𝐸 be the elliptic curve defined over the prime field 

𝔽𝑝 as follows: 

where 4𝑎3 + 27𝑏2 ≠ 0  and 𝑎, 𝑏 ∈ 𝔽𝑝 . Points satisfying 

Eq. (1) including the point at infinity 𝒪  are known as 

rational points on the curve, forms an additive Abelian 

group denoted by E(𝔽𝑝). The total number of points on 𝐸 

is denoted as #E(𝔽𝑝). When the definition field is the 𝑘th
 

degree extension field 𝔽𝑝𝑘, rational points on the curve 𝐸 

also forms an additive Abelian group denoted as 𝐸(𝔽𝑝𝑘). 

 

1) Point Addition  

Let’s consider two rational points 𝐿 = (𝑥𝑙 , 𝑦𝑙), 𝑀 =
(𝑥𝑚, 𝑦𝑚)  and their addition 𝑁 = 𝐿 + 𝑀 , where 𝑁 =
(𝑥𝑛 , 𝑦𝑛)  and  𝐿, 𝑀, 𝑁 ∈ 𝐸(𝔽𝑝) . Then the 𝑥  and 

𝑦 coordinates of 𝑁 are obtained as follows: 

 (𝑥𝑛 , 𝑦𝑛) = ((𝜆2 − 𝑥𝑙 − 𝑥𝑚), (𝑥𝑙 − 𝑥𝑛)𝜆 − 𝑦𝑙), (2a) 

 𝜆 =  {
(𝑦𝑚 − 𝑦𝑙)(𝑥𝑚 − 𝑥𝑙)−1   𝐿 ≠ 𝑀,

3𝑥𝑙
2 + 𝑎 2𝑦𝑙⁄                     𝐿 = 𝑀.

 (2b) 

Here 𝜆 is the tangent at the point on the curve and 𝒪 is the 

additive unity in 𝐸(𝔽𝑝). When 𝐿 ≠ 𝑀, then 𝐿 + 𝑀 is called 

elliptic curve addition (ECA). If 𝐿 = 𝑀, then 𝐿 + 𝑀 = 2𝐿, 

which is known as elliptic curve doubling (ECD). 

Let 𝑟  be the order of the target rational point group 

and 𝑠be the scalar such that 0 ≤ 𝑠 < 𝑟. Scalar multiplication 

of rational point 𝑀, denoted as [𝑠]𝑀 can be calculated by 

(𝑠 − 1)-times additions of 𝑀 as, 

If 𝑠 = 𝑟 , where 𝑟  is the order of the curve then 

[𝑟]𝑀 = 𝒪. When [𝑠]𝑀 = 𝑁 and 𝑠 is unknown, then the 

solving 𝑠  from 𝑀  and 𝑁  is known as elliptic curve 

discrete logarithm problem (ECDLP). The security of 

elliptic curve cryptography lies on the difficulty of solving 

ECDLP.  

This paper has considered left-to-right binary scalar 

multiplication for evaluating the efficiency of the given 

mapping operation. From the view point of security, binary 

method is vulnerable to side channel attack [6]. Therefore, 

this paper has also experimented with Montgomery ladder 

[7] and sliding-window method [8] for scalar multiplication 

evaluation. 

 

B. Kachisa-Schaefer-Scott (KSS) Curve 
 

In [3], the authors proposed a family of non-super-

singular Brezing-Weng pairing-friendly elliptic curves of 

embedding degree𝑘 = {16, 18, 32, 26, 40}, using elements 

in the cyclotomic field. Like other pairing-friendly curves, 

characteristic 𝑝, Frobenius trace 𝑡  and order 𝑟  of these 

curves are given systematically by an integer variable 

known as mother parameter. As mentioned earlier this paper 

considers KSS16 and KSS18 curve as follows: 

 

KSS18 KSS16 

𝐸/𝔽𝑝18 ∶  𝑌2 = 𝑋3 + 𝑏, 𝑏 ∈

𝔽𝑝 and 𝑏 ≠ 0. 

𝐸/𝔽𝑝16 ∶  𝑌2 = 𝑋3 + 𝑎𝑋, 𝑎 ∈

𝔽𝑝 and 𝑎 ≠ 0. 

 

Here 𝑋, 𝑌 ∈ 𝔽𝑝18  in KSS18 and 𝑋, 𝑌 ∈ 𝔽𝑝16  in KSS16 

curve respectively. The curves are parametrized by an 

integer variable 𝑢 as follows: 

 

KSS18 

𝑝(𝑢) = (𝑢8 + 5𝑢7 + 7𝑢6 + 37𝑢5 + 188𝑢4 + 259𝑢3

+ 343𝑢2 + 1763𝑢 + 2401) ∕ 21 

𝑟(𝑢) = (𝑢6 + 37𝑢3 + 343) ∕ 343 

𝑡(𝑢) = (𝑢4 + 16𝑢 + 7) ∕ 7 

KSS16 

𝑝(𝑢) = (𝑢10 + 2𝑢9 + 5𝑢8 + 48𝑢6 + 152𝑢5 + 240𝑢4

+ 625𝑢2 + 34 + 2398𝑢 + 3125)

∕ 980 

𝑟(𝑢) = (𝑢8 + 48𝑢4 + 625)/61550 

𝑡(𝑢) = (2𝑢5 + 41𝑢 + 35) ∕ 35 

 𝐸/𝔽𝑝: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, (1) 

 [𝑠]𝑀 = ∑ 𝑀

𝑠−1

𝑖=0

,          0 ≤ 𝑠 < 𝑟. (3) 
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The necessary condition for 𝑢  in KSS18 is 𝑢 ≡

14(mod 42)  and whereas for KSS16 curve it is 𝑢 ≡

25 or 45(mod 70). 

 

C. Extension Field Arithmetic 
 

In [9], the authors have explained optimal extension field 

towering by using irreducible binomials. Since this paper 

uses two curves of different extension degree, therefore, the 

towering process of 𝔽𝑝18 and 𝔽𝑝16  are represented as 

follows: 

 

KSS18 towering KSS16 towering 

𝔽𝑝3 = 𝔽𝑝[𝑖] (𝑖3 − 𝑐)⁄ , 

𝔽𝑝6 =  𝔽𝑝3 [𝑣] (𝑣2 − 𝑖)⁄ , 

𝔽𝑝18 =  𝔽𝑝6 [𝜃] (𝜃3 − 𝑣)⁄ , 

𝔽𝑝2 = 𝔽𝑝[𝛼] (𝛼2 − 𝑧)⁄ , 

𝔽𝑝4 =  𝔽𝑝2 [𝛽] (𝛽2 − 𝛼)⁄ , 

𝔽𝑝8 =  𝔽𝑝4 [𝛾] (𝛾2 − 𝛽)⁄ , 

𝔽𝑝16 =  𝔽𝑝8 [𝜔] (𝜔2 − 𝛾)⁄ . 

  

Here the necessary condition of KSS18 towering is 3|(𝑝 −

1), where 𝑝 is the characteristics of KSS18 curve and 𝑐 is 

the cubic non-residue. For KSS16 curve, 4|(𝑝 − 1) and 𝑧 

is the quadratic non-residue. For both towering, 𝑐 = 2 and 

𝑧 = 2  will be best choice for efficient calculation since 

multiplication by 2  can be done by 1 bit left shifting 

operation. 

 

D. 𝔾𝟏, 𝔾𝟐 and 𝔾𝟑 Groups 

 

In the context of pairing-based cryptography, especially 

on KSS curves, two additive rational point groups 𝔾1, 𝔾2 

and a multiplicative group 𝔾𝟑  of order 𝑟 are considered. 

From [10], 𝔾1,𝔾2 and 𝔾𝟑 are defined as follows: 

 

𝔾1 = 𝐸(𝔽𝑝)[𝑟] ∩ Ker(𝜋𝑝 − [1]), 

  𝔾2 = 𝐸(𝔽𝑝𝑘)[𝑟] ∩ Ker(𝜋𝑝 − [𝑝]), 

𝔾3 =  𝔽
𝑝𝑘
∗ /(𝔽

𝑝𝑘
∗ )𝑟 , 

(4a) 

 𝜉: 𝔾1 × 𝔾2 → 𝔾3 , (4b) 

where 𝜋𝑝  is the Frobenius mapping and 𝜉  denotes Ate 

pairing. In the case of KSS curves, the above 𝔾1  is just 

𝐸(𝔽𝑝) . In what follows, rest of this paper considers 

𝑃 ∈ 𝔾1 ⊂ 𝐸(𝔽𝑝)  and 𝑄 ∈ 𝔾2 , where 𝔾2  is a subset of 

𝐸(𝔽𝑝16)  and 𝐸(𝔽𝑝18)  for KSS16 and KSS18 curves 

respectively. 

 

E. Twist on KSS Curves 
 

There exists a twisted curve with a group of rational 

points of order 𝑟 which are isomorphic to the group where 

rational point 𝑄 ∈ 𝔾2 ⊂ 𝐸(𝔽𝑝𝑘) belongs to. This subfield 

isomorphic rational point group includes a twisted 

isomorphic point of 𝑄 , typically denoted as 𝑄′ ∈  𝔾2
′ ⊂

𝐸′(𝔽𝑝𝑘/𝑑), where 𝑘 is the embedding degree and 𝑑 is the 

twist degree. Since points on the twisted curve are defined 

over a smaller field than 𝔽𝑝𝑘 , therefore ECA and ECD 

becomes faster. However, when required in the pairing 

calculation, such as for line evaluation they can be quickly 

mapped to a point over 𝔽𝑝𝑘. Defining such mapping and re-

mapping techniques is the focus of this paper. Since the 

pairing-friendly KSS16 curve has CM discriminant of 

𝐷 = 1  and 4|𝑘 , therefore quartic twist is available. For 

sextic twist, the curve should have 𝐷 = 3 and 6|𝑘, which 

exists in KSS18. 

 

 

III. SYSTEM MODEL AND METHODS 
 

This section introduces the target mapping procedure of 

𝔾2 rational point group to its twisted (quartic and sextic) 

isomorphic group 𝔾2
′  for Ate-based pairing over the 

considered KSS curves. 

 

A. Sextic Twisted Mapping of KSS18  
 

Let 𝐸  be the KSS18 curve in the base field 𝔽𝑝3   as 

follows: 

 𝐸: 𝑦2 =  𝑥3 + 𝑏, (5) 

where 𝑏 ∈ 𝔽𝑝; 𝑥, 𝑦, ∈ 𝔽𝑝3. In the context of KSS18 curve, 

let us consider a rational point 𝑄 ∈ 𝔾2 ⊂ 𝐸(𝔽𝑝18). This 𝑄 

has a special vector representation with 18 𝔽𝑝 coefficients 

for each 𝑥𝑄 and 𝑦𝑄 coordinate. Table 1 shows the structure 

of the coefficients of 𝑄 ∈ 𝔽𝑝18. Among the 18 coefficients, 

there are 3 continuous nonzero 𝔽𝑝 coefficients. The other 

coefficients are zero. However, the set of these nonzero 

coefficients belongs to a 𝔽𝑝3  element. 

Table 1. Vector representation of 𝑄 =  (𝑥𝑄 , 𝑦𝑄)  ∈ 𝔽𝑝18 

 1 𝑖 𝑖2 𝑣 𝑖𝑣 𝑖2𝑣 𝜃 𝑖𝜃 𝑖2𝜃 𝑣𝜃 𝑖𝑣𝜃 𝑖2𝑣 𝜃 𝜃2 𝑖𝜃2 𝑖2 𝜃2 𝑣𝜃2 𝑖𝑣𝜃2 𝑖2𝑣𝜃2 

𝑥𝑄 0 0 0 0 0 0 0 0 0 0 0 0 𝑎12 𝑎13 𝑎14 0 0 0 

𝑦𝑄 0 0 0 𝑎3 𝑎4 𝑎5 0 0 0 0 0 0 0 0 0 0 0 0 
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Fig. 1. Sextic twist of KSS18 curve. 

 

 

Fig. 2. Mapping and remapping of 𝑄 and 𝑄′. 

 

 

This paper considers parameter given in [1] for KSS18 

curve. In such consideration,  𝑄  is given as 

𝑄 =  (𝑥′𝜃2, 𝑦′𝑣) , showed in Table 1, where 𝑥′ =
(𝑎12 + 𝑎13𝑖 + 𝑎14𝑖2), 𝑦′ = (𝑎3 + 𝑎4𝑖 + 𝑎5𝑖2) ∈ 𝔽𝑝3  , 

where 𝑣 and 𝜃 are the basis elements of 𝔽𝑝6  and 𝔽𝑝18 

respectively. Here 𝑥′  and 𝑦′  are the coordinates of 𝑄′ 

and 𝑄′ =  (𝑥′, 𝑦′) ∈  𝔾2
′ ⊂ 𝐸′  is the sextic twisted 

isomorphic subfield rational point of 𝑄 shown in Fig. 1.  

Now from Eq. (5), let us find the twisted curve 𝐸′ shown 

in Fig. 1 as follows:  

(𝑦′𝑣)2  = (𝑥′𝜃2)3 + 𝑏, 

𝑦′2𝜃6  =  𝑥′3𝜃6 + 𝑏,  

𝑦′2𝑖 =  𝑥′3𝑖 + 𝑏, 

multiplying 𝑖−1 in both sides. 

 𝑦′2 =  𝑥′3 + 𝑏 𝑖−1, (6) 

where 𝜃6 = 𝑣2 = 𝑖. The twisted curve of 𝐸′ is obtained as 

𝑦2 = 𝑥3 + 𝑏𝑖−1, where 𝑖 is the basis element in 𝔽𝑝3 and  

𝑖−1 is the quadratic and cubic non-residue over 𝔽𝑝3.  

The mapping from 𝑄 ∈ 𝔽𝑝18 to 𝑄′ ∈ 𝔽𝑝3 can be easily 

achieved by selecting the 3 nonzero 𝔽𝑝 coefficients of each 

coordinate of 𝑄 and placing them in 𝑄′ =  (𝑥′, 𝑦′) ∈ 𝔽𝑝3 

respectively. No arithmetic operation is required for this 

mapping operation. 

The reverse mapping, that is mapping from 𝑄′ =
(𝑥′, 𝑦′) ∈ 𝔽𝑝3  to 𝑄 =  (𝑥′𝜃2, 𝑦′𝑣)  ∈ 𝔽𝑝18  can also be 

obtained easily by just placing the 𝑥′ and 𝑦′ in the correct 

basis position in 𝑄 =  (𝑥′𝜃, 𝑦′𝑣). It this case it also needs 

no extra arithmetic operation. Fig. 2 shows the scenario. 

 

B. Quartic Twisted Mapping of KSS16  
 

For quartic twisted mapping at first it is required to obtain 

certain rational point 𝑄 of subgroup order 𝑟 in 𝐸(𝔽𝑝16). 

Let us consider the rational point 𝑄 ∈ 𝔾2 ⊂ 𝐸(𝔽𝑝16) and 

its quartic twisted rational point 𝑄′ ∈  𝔾2
′ ⊂ 𝐸′(𝔽𝑝4) . 

Rational point 𝑄 has a special vector representation given 

in Table 2. From Table 2, co-ordinate of 𝑄 = (𝑥𝑄 , 𝑦𝑄) ∈

𝔾2 ⊂ 𝐸(𝔽𝑝16)is obtained as 𝑄 = (𝑥𝑄 , 𝑦𝑄) = (𝛾𝑥𝑄′ , 𝜔𝛾𝑦𝑄′) 

where 𝑥𝑄′ , 𝑦𝑄′  are the co-ordinates of the rational point 

𝑄′ in the twisted curve. Now let’s find the twisted curve of 

KSS16 in 𝔽𝑝4 as follows: 

(𝜔𝛾𝑦𝑄′)
2

= (𝛾𝑥𝑄′)
3

+ 𝑎(𝛾𝑥𝑄′), 

  𝛾𝛽𝑦𝑄′
2 = 𝛾𝛽 𝑥𝑄′

3   + 𝑎𝛾𝑥𝑄′ , 

 𝑦𝑄′
2 = 𝑥𝑄′

3 + 𝑎𝛽−1𝑥𝑄′ , (7) 

multiplying (𝛾𝛽)−1 both sides. 

The twisted curve of 𝐸′  is obtained as 𝑦2 = 𝑥3 +

𝑎𝛽−1𝑥 where 𝛽 is the basis element in 𝔽𝑝4. There is a 

tricky part that needs attention when calculating the ECD in 

𝐸′(𝔽𝑝4) presented in the following equation. 

 𝜆 = (3𝑥𝑄′
2 + 𝒂)(2 𝑦𝑄′)

−1
, (8) 

where 𝒂 ∈ 𝔽𝑝4 , since 𝒂 = 𝑎𝛽−1  and 𝛽 ∈ 𝔽𝑝4 . The 

calculation of 𝒂 = 𝑎𝛽−1 is given as follows: 

 
𝑎𝛽−1 = (𝑎 + 0𝛼 + 0𝛽 + 0𝛼𝛽)𝛽−1, 

= 𝑧−1𝑎𝛼𝛽,                        
(9) 

where 𝛼2 = 𝑧. Now let’s denote the quartic mapping as 

follows: 

𝑄 = (𝑥𝑄 , 𝑦𝑄) = (𝛾𝑥𝑄′ , 𝜔𝛾𝑦𝑄′   ) ∈ 𝔾2 ⊂ 𝐸(𝔽𝑝16) 

Table 2. Vector representation of 𝑄 =  (𝑥𝑄, 𝑦
𝑄

)  ∈ 𝔽𝑝
16   

 1 𝛼 𝛽 𝛼𝛽 𝛾 𝛼𝛾 𝛽𝛾 𝛼𝛽𝛾 𝜔 𝛼𝜔 𝛽𝜔 𝛼𝛽𝜔 𝛾𝜔 𝛼𝛾𝜔 𝛽𝛾𝜔 𝛼𝛽𝛾𝜔 

𝑥𝑄 0 0 0 0 𝑛4 𝑛5 𝑛6 𝑛7 0 0 0 0 0 0 0 0 

𝑦𝑄 0 0 0 0 0 0 0 0 0 0 0 0 𝑛12 𝑛13 𝑛14 𝑛15 
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  ↦     𝑄′  = (𝑥𝑄′ , 𝑦𝑄′) ∈ 𝔾2′ ⊂ 𝐸′(𝔽𝑝4 ). 

It means for quartic twisted mapping it requires no 

calculation except selecting the coefficient and placing them 

in correct basis position same as KSS18 curve. 

 

 

IV. RESULT ANALYSIS 
 

The focus of this paper is to derive twisted mapping and 

obtain experimental results to show the effectiveness of the 

isomorphic mapping over KSS16 and KSS18 curves. To 

determine the effectiveness, this paper has implemented 3 

well-known elliptic curve scalar multiplication methods 

named as the binary (BIN) method, Montgomery ladder 

(ML) method, and sliding-window (SW) method using the 

derived mapping and without mapping. 

For the experiment first the authors have applied the 

mapping technique shown in Section III to map rational 

point 𝑄 ∈ 𝔾2 ⊂ 𝐸(𝔽𝑝𝑘) to its isomorphic twisted point 

𝑄′ ∈  𝔾2
′ ⊂ 𝐸′(𝔽𝑝𝑘 𝑑⁄ ) in both KSS curves. After that the 

scalar multiplication of 𝑄′ is calculated. Then the resulted 

points are re-mapped to 𝔾2 ⊂ 𝐸(𝔽𝑝𝑘). Let’s define this 

strategy as with mapping. On the other hand, scalar 

multiplication of 𝑄  without mapping is also calculated 

which is denoted as w/o mapping. 

In the experiment, the authors have considered most 

recent parameters of their knowledge till date given by 

Barbulescu and Duquesne [1]. These parameters are said to 

be secure enough against the recent development of ECDLP 

attack by Kim and Barbulescu [4]. 

 

 

Table 3. Computational environment 

 PC iPhone6s 

CPU 
2.7 GHz Intel Core 

i5 

Apple A9 Dual-core 

1.84 GHz 

Memory 16 GB 2 GB 

OS OS X 10.12.3 iOS 10.2.1 

Compiler gcc 4.2.1 gcc 4.2.1 

Programming 

language 
C Objective-C, C 

Library [11] GNU MP 6.1.1 GNU MP 6.1.1 

 

 

Table 4. Parameters used in the experiment 

 KSS18 KSS16 

Mother parameter 
𝑢 = 244 + 222 −
29 + 2  

𝑢 = −234 + 227 −
223 + 220 − 211 + 1  

Obtained curve 𝑦2 = 𝑥3 + 3  𝑦2 = 𝑥3 + 𝑥 

Order 𝑟 size 256-bit 263-bit 

 

 Table 3 shows the experiment environment. Table 4 

shows the parameters used in the experiment. The 

comparative results are shown in Figs. 3 and 4. In the 

experiment 100 random scalars 0 < 𝑠 ≤ 𝑟 is generated and 

the average is execution time is obtained in millisecond. 

Analyzing Figs. 3 and 4, we can find that scalar 

multiplication on the sextic twisted KSS18 curve using the 

given mapping is more than 20 times faster than without the 

mapping. In the case of quartic twisted KSS16 curve, scalar 

multiplication becomes at most 10 times faster after 

applying the given mapping than no mapping. Another 

important difference is, sextic twisted mapped rational 

points take less time in both environments since it has one 

less coefficient than quartic twisted KSS16 curve points and 

the random numbers size for in KSS18 curve is smaller than 

KSS16 case. 

 

 

 

Fig. 3. Comparative result of BIN, SW and ML scalar multiplication 

methods with and w/o mapping in KSS18 curve. 

 

 

Fig. 4. Comparative result of BIN, SW and ML scalar multiplication 

methods with and w/o mapping in KSS16 curve. 
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In the experiment, execution environments, such as PC 

and iPhone, have different CPU clock frequencies. In both 

environments, single processor core is utilized. The ratio of 

CPU frequencies of iPhone and PC is about 1.84 ∕ 2.7 ≈

0.68. In KSS18 curve, the execution time [PC: iPhone] ratio 

without mapping for is around 0.62 to 0.66, which is close 

to CPU frequency ratio. On the other hand, with mapping 

case for KSS18 curve, the ratio is also around 0.6. For 

KSS16 curve, the ratio with no mapping case is more than 

0.8 and for mapping case it is around 0.7 to 0.9. Since PC 

and iPhone has different processor architectures therefore 

it’s frequency ratio has modest relation with the execution 

time ratio. The ratio may also be effected by the other 

processes, running in certain environment during the 

experiment time. 

 

 

V. DISCUSSION AND CONCLUSION 
 

This paper explicitly shows the isomorphic mapping 

procedure of 𝔾2  rational point group to its sextic and 

quartic twisted sub-field isomorphic rational point group 𝔾2
′  

and its reverse mapping for KSS18 and KSS16 curves in the 

context of Ate-based pairing. The authors have evaluated the 

effectiveness of such mapping by implementing 3 different 

scalar multiplication methods on twisted rational points in 

𝔾2
′ . The result of scalar multiplication in 𝔾2

′  accelerates the 

scalar multiplication in 𝔾2 by 10 to 20 times than scalar 

multiplication of 𝔾2 rational point directly in 𝐸(𝔽𝑝16) and 

𝐸(𝔽𝑝18). The authors would like to make pairing based 

protocol and apply this technique as a future work. 
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