DOI QR코드

DOI QR Code

Relation of Breakdown Voltage and Channel Doping Concentration of Sub-10 nm Double Gate MOSFET

10 nm 이하 DGMOSFET의 항복전압과 채널도핑농도의 관계

  • Jung, Hakkee (Department of Electronic Engineering, Kunsan National University)
  • Received : 2017.05.22
  • Accepted : 2017.05.30
  • Published : 2017.06.30

Abstract

Reduction of breakdown voltage is serious short channel effect (SCE) by shrink of channel length. The deviation of breakdown voltage for doping concentration is investigated with structural parameters of sub-10 nm double gate (DG) MOSFET in this paper. To analyze this, thermionic and tunneling current are derived from analytical potential distribution, and breakdown voltage is defined as drain voltage when the sum of two currents is $10{\mu}A$. As a result, breakdown voltage increases with increase of doping concentration. Breakdown voltage decreases by reduction of channel length. In order to solve this problem, it is found that silicon and oxide thicknesses should be kept very small. In particular, as contributions of tunneling current increases, breakdown voltage increases.

항복전압의 감소는 채널길이 감소에 의하여 발생하는 심각한 단채널 효과이다. 본 논문에서는 10 nm 이하 채널길이를 갖는 이중게이트 MOSFET에서 채널크기의 변화를 파라미터로 하여 채널도핑에 따른 항복전압의 변화를 고찰하였다. 이를 위하여 해석학적 전위분포에 의한 열방사 전류와 터널링 전류를 구하고 두 성분의 합으로 구성된 드레인 전류가 $10{\mu}A$가 될 때, 드레인 전압을 항복전압으로 정의하였다. 결과적으로 채널 도핑농도가 증가할수록 항복전압은 크게 증가하였다. 채널길이가 감소하면서 항복전압이 크게 감소하였으며 이를 해결하기 위하여 실리콘 두께 및 산화막 두께를 매우 작게 유지하여야만 한다는 것을 알 수 있었다. 특히 터널링 전류의 구성비가 증가할수록 항복전압이 증가하는 것을 관찰하였다.

Keywords

References

  1. J. Wu, J. Min and Y. Taur, "Short-Channel Effects in Tunnel FETs," IEEE Transactions On Electron Devices, vol. 62, no. 9, pp. 3019-3024, Sep. 2015. https://doi.org/10.1109/TED.2015.2458977
  2. M. Veshala, R. Jatooth, and K. R. Reddy, "Reduction of Short-Channel Effects in FinFET," International Journal of Engineering and Innovative Technology, vol. 2, no. 9, pp. 118-124, March 2013.
  3. C. W. Lee, A. Afzalian, R. Yan, N. D. Akhavan, W. Xiong, and J. P. Colinge, "Drain Breakdown Voltage in MuGFETs: Influence of Physical Parameters," IEEE Tranactions On Electron Devices, vol. 55, no. 12, pp. 3503-3506, Dec. 2008. https://doi.org/10.1109/TED.2008.2006546
  4. H. Mohammad, H. Abdullah, C. F. Dee, P. S. Menon, and B. Y. Majlis," A New Analytical Model for Lateral Breakdown Voltage of Double-gate Power MOSFETs," in 2011 IEEE Regional symposium on micro and nano Electronics (IEEE-RSM2011), Kota Kinabalu, Malaysia, pp. 92-95, Sep. 2011.
  5. S. Dimitrijev, Principles of Semiconductor Devices, 2nd ed, New York, NY: . Oxford University Press; 2012.
  6. Z. Ding, G. Hu, J. Gu, R. Liu, L. Wang, and T. Tang, "An analytical model for channel potential and subthreshold swing of the symmetric and asymmetric double-gate MOSFETs," Microelectronics Journal, vol. 42, no. 3, pp. 515-519, March 2011. https://doi.org/10.1016/j.mejo.2010.11.002
  7. H. K. Jung, "Influence of Tunneling Current on Treshold Voltage Shift by Channel Length for Asymmetric Double Gate MOSFET," Journal of Korea Institute of Information and Communication Engineering, vol. 20, no. 7, pp. 1311-1316, July 2016. https://doi.org/10.6109/jkiice.2016.20.7.1311
  8. H. K. Jung, and S. Dimitrijev, "Optimum top and bottom thickness and flat-band voltage for improving subthreshold characteristics of 5 nm DGMOSFET," Superlattices and Microstructures, vol. 101, no. 1, pp. 285-292, January 2017. https://doi.org/10.1016/j.spmi.2016.11.040
  9. TCAD Manual, Part 4:INSPEC, ISE Integrated Systems Engineering AG, Zurich, Switzerland, p.56, ver7.5, 2001.
  10. H. K. Jung, "Relation of Oxide Thickness and DIBL for Asymmetric Double Gate MOSFET," Journal of the Korea Institue of Information and Communication Engineering, vol. 20, no. 4, pp. 799-804, April 2016. https://doi.org/10.6109/jkiice.2016.20.4.799