DOI QR코드

DOI QR Code

Possible Effect of Western North Pacific Monsoon on Tropical Cyclone Activity around East China Sea

북서태평양 몬순이 동중국해 주변의 태풍활동에 미치는 영향

  • Choi, Jae-Won (Institute of Atmospheric Physics, Chinese Academy of Sciences) ;
  • Cha, Yumi (National Institute of Meteorological Research) ;
  • Kim, Jeoung-Yun (National Institute of Meteorological Research)
  • Received : 2016.11.08
  • Accepted : 2017.03.23
  • Published : 2017.06.30

Abstract

This study analyzed the correlation between tropical cyclone (TC) frequency and the western North Pacific monsoon index (WNPMI), which have both been influential in East China Sea during the summer season over the past 37 years (1977-2013). A high positive correlation was found between these two variables, but it did not change even if El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) years were excluded. To determine the cause of this positive correlation, the highest (positive WNPMI phase) and lowest WNPMIs (negative WNPMI phase) during an eleven-year period were selected to analyze the mean difference between them, excluding ENSO years. In the positive WNPMI phase, TCs were mainly generated in the eastern seas of the tropical and subtropical western North Pacific, passing through the East China Sea and moving northward toward Korea and Japan. In the negative phase, TCs were mainly generated in the western seas of the tropical and subtropical western North Pacific, passing through the South China Sea and moving westward toward China's southern regions. Therefore, TC intensity in the positive phase was stronger due to the acquisition of sufficient energy from the sea while moving a long distance up to East Asia's mid-latitude. Additionally, TCs occurred more in the positive phase. Regarding the difference in 850 hPa and 500 hPa stream flows between the two phases, anomalous cyclones were strengthened in the tropical and subtropical western North Pacific, whereas anomalous anticyclones were strengthened in East Asia's mid-latitude regions. Due to these two anomalous pressure systems, anomalous southeasterlies developed in East China Sea, which played a role in the anomalous steering flows that moved TCs into this region. Furthermore, due to the anomalous cyclones that developed in the tropical and subtropical western North Pacific, more TCs could be generated in the positive phase.

이 연구는 최근 37년(1977-2013) 동안 여름철 동중국해에 영향을 준 태풍빈도와 북서태평양 몬순지수와의 상관을 분석하였다. 두 변수 사이에는 뚜렷한 양의 상관관계가 존재하였으며, 엘니뇨-남방진동 해를 제외하여도 높은 양의 상관관계는 변하지 않았다. 이러한 두 변수 사이에 양의 상관관계의 원인을 알아보기 위해 가장 높은 북서태평양 몬순지수를 갖는 11개 해(양의 북서태평양 몬순지수 위상)와 가장 낮은 북서태평양 몬순지수를 갖는 11개 해(음의 북서태평양 몬순지수 위상)를 선정하여 두 위상 사이에 평균 차를 분석하였다. 양의 북서태평양 몬순지수 위상에는 태풍들이 열대 및 아열대 서태평양의 동쪽해역으로부터 동중국해를 지나 한국 및 일본을 향해 북상하는 경향을 나타내었다. 음의 북서태평양 몬순지수 위상에는 태풍들이 남중국해를 지나 중국 남부지역을 향해 서진하는 패턴을 보였다. 따라서 동아시아 중위도까지 먼 거리를 이동하면서 바다로부터 충분한 에너지를 얻을 수 있는 양의 북서태평양 몬순지수 위상에의 태풍강도가 더 강하였다. 또한 양의 북서태평양 몬순지수 위상에 태풍들이 더 많이 발생하는 특성을 보였다. 850 hPa과 500 hPa에서의 수평 대기순환에 대한 두 위상 사이에 차에서는 열대 및 아열대 서태평양에서 저기압 아노말리가, 동아시아 중위도 지역에는 고기압 아노말리가 강화되었다. 이 두 기압계 아노말리로 인해 동중국해에서는 남동풍 아노말리가 발달하였으며, 이 남동풍 아노말리가 태풍들을 동중국해로 향하게 하는 지향류 아노말리의 역할을 하였다. 또한 열대 및 아열대 서태평양에서 발달한 저기압 아노말리로 인해 양의 북서태평양 몬순지수 위상에 태풍들이 좀 더 많이 발생할 수 있었다.

Keywords

References

  1. Camargo, S.J. and Sobel, A.H., 2005, Western North Pacific tropical cyclone intensity and ENSO. Journal of Climate, 18, 2996-3006. https://doi.org/10.1175/JCLI3457.1
  2. Chan, J.C.L., 1985, Tropical cyclone activity in the northwest Pacific in relation to El Nino/Southern Oscillation phenomenon. Monthly Weather Review, 113, 599-606. https://doi.org/10.1175/1520-0493(1985)113<0599:TCAITN>2.0.CO;2
  3. Chan, J.C.L., 1995, Tropical cyclone activity in the western North Pacific in relation to the stratospheric Quasi-Biennial Oscillation. Monthly Weather Review, 123, 2567-2571. https://doi.org/10.1175/1520-0493(1995)123<2567:TCAITW>2.0.CO;2
  4. Choi, K.S. and Byun, H.R., 2010, Possible relationship between western North Pacific tropical cyclone activity and Arctic Oscillation. Theoretical and Applied Climatology, 100, 261-274. https://doi.org/10.1007/s00704-009-0187-9
  5. Choi, K.S., Kang, K.R., Kim, D.W., Hwang, H.S., and Lee, S.R., 2009, A study on the characteristics of tropical cyclone passage frequency over the western North Pacific using Empirical Orthogonal Function. Journal of Korean Earth Science Society, 30, 721-733. https://doi.org/10.5467/JKESS.2009.30.6.721
  6. Choi, K.S. and Kim, T.R., 2011a, Development of a diagnostic index on the approach of typhoon affecting Korean Peninsula. Journal of Korean Earth Science Society 32, 347-359 https://doi.org/10.5467/JKESS.2011.32.4.347
  7. Choi, K.S. and Kim, T.R., 2011b, Regime shift of the early 1980s in the characteristics of the tropical cyclone affecting Korea. Journal of Korean Earth Science Society, 32, 453-460. https://doi.org/10.5467/JKESS.2011.32.5.453
  8. Choi, K.S. and Moon, I.J., 2012, Influence of the Western Pacific teleconnection pattern on western North Pacific tropical cyclone activity. Dynamics of Atmospheres and Oceans, 57, 1-16. https://doi.org/10.1016/j.dynatmoce.2012.04.002
  9. Choi, K.S., Wu, C.C., and Cha, E.J., 2010, Change of tropical cyclone activity by Pacific-Japan teleconnection pattern in the western North Pacific. Journal of Geophysical Research, 115, D191154.
  10. Elsner, J.B.and Kocher, B., 2000, Global tropical cyclone activity: A link to the North Atlantic Oscillation. Geophysical Research Letters, 27, 129-132. https://doi.org/10.1029/1999GL010893
  11. Gray, W.M., 1975, Tropical cyclone genesis. Dept. of Atmospheric Science Paper 234, Colorado State University, Fort Collins, CO, 121 pp.
  12. Ho, C.H., Kim, H.S., Jeong, J.H., and Son, S.W., 2009, Influence of stratospheric Quasi-Biennial Oscillation on tropical cyclone tracks in western North Pacific. Geophysical Research Letters, 36(L06702), doi:10.1029/2009GL037163.
  13. Ho, C.H., Kim, J.H., Kim, H.S., Sui, C.H., and Gong, D.Y., 2005, Possible influence of the Antarctic Oscillation on tropical cyclone activity in the western North Pacific. Journal of Gophysical Research, 110(D19104), doi:10.1029/2005JD005766.
  14. Kalnay, E.M. et al., 1996, The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the Amican Meteorological Society, 77, 437-472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  15. Kim, J.H., Ho, C.H., and Sui, C.H., 2005, Circulation features associated with the record-breaking typhoon landfall on Japan in 2004. Geophysical Research Letters, 32, L14713, doi:10.1029/2005GL022494.
  16. Kistler, R. et al., 2001, The NCEP/NCAR 50-year reanalysis. Bulletin of the Amican Meteorological Society, 82, 247-267. https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
  17. Lander, M.A., 1994, An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Monthly Weather Review, 122, 636-651. https://doi.org/10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2
  18. Larson, J., Zhou, Y., and Higgins, R.W., 2005, Characteristics of landfalling tropical cyclones in the United States and Mexico: Climatology and interannual variability. Journal of Climate, 18, 1247-1262. https://doi.org/10.1175/JCLI3317.1
  19. Lau, K.M. and Li, M.T., 1984, The monsoon of East Asia and its global associations. Bulletin of the Amican Meteorological Society, 65, 114-125. https://doi.org/10.1175/1520-0477(1984)065<0114:TMOEAA>2.0.CO;2
  20. Liebmann, B. and Smith, C.A., 1996, Description of a complete (interpolated) outgoing longwave radiation dataset. Bulletin of the Amican Meteorological Society, 77, 1275-1277.
  21. Lyon, B. and Camargo, S.J., 2009, The seasonally-varying influence of ENSO on rainfall and tropical cyclone activity in the Philippines. Climate Dynamics, 32, 125-141. https://doi.org/10.1007/s00382-008-0380-z
  22. Matsuura, T., Yumoto, M., and Iizuka, S., 2003, A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific. Climate Dynamics, 21, 105-117. https://doi.org/10.1007/s00382-003-0327-3
  23. Nitta, T., 1986, Long-term variations of cloud amount in the western Pacific region. Journal of the Meteorolological Society of Japan, 64, 373-390. https://doi.org/10.2151/jmsj1965.64.3_373
  24. Nitta, T., 1987, Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. Journal of the Meteorolological Society of Japan, 65, 373-390. https://doi.org/10.2151/jmsj1965.65.3_373
  25. Nitta, T., 1989, Global features of the Pacific-Japan oscillation. Meteorology and Atmospheric Physics, 41, 5-12. https://doi.org/10.1007/BF01032585
  26. Pan, C.J., Reddy, K.K., Lai, H.C., and Yang, S.S., 2010, Role of mixed precipitating cloud systems on the typhoon rainfall. Annale Geophysicae, 28, 11-16. https://doi.org/10.5194/angeo-28-11-2010
  27. Park, S.K. and Lee, E.H., 2007, Synoptic features of orographically enhanced heavy rainfall on the east coast of Korea associated with Typhoon Rusa (2002). Geophysical Research Letters, 34, L02803, doi:10.1029/2006GL028592.
  28. Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C., and Wang, W., 2002, An improved in situ and satellite SST analysis for climate. Journal of Climate, 15, 1609-1625. https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
  29. Saunders, M.A., Chandler, R.E., Merchant, C.J., and Roberts, F.P., 2000, Atlantic hurricanes and NW Pacific typhoons: ENSO spatial impacts on occurrence and landfall. Geophysical Research Letters, 27, 1147-1150. https://doi.org/10.1029/1999GL010948
  30. Tao, S.Y. and Chen, L., 1987, A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60-92.
  31. Wang, B. and Chan, J.C.L., 2002, How strong ENSO events affect tropical storm activity over the western North Pacific. Journal of Climate, 15, 1643-1658. https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
  32. Wang, B. and Fan, Z., 1999, Choice of South Asian summer monsoon indices. Bulletin of the Amican Meteorological Society, 80, 629-638. https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2
  33. Wang, H.J. and Fan, K., 2007, Relationship between the Antarctic Oscillation in the western North Pacific typhoon frequency. Chinease Science Bulletin, 52, 561-565. https://doi.org/10.1007/s11434-007-0040-4
  34. Wang, H.J., Sun, J.Q., and Ke, F., 2007, Relationships between the North Pacific Oscillation and the typhoon/hurricane frequencies. Science in China Series D: Earth Sciences, 50, 1409-1416. https://doi.org/10.1007/s11430-007-0097-6
  35. Wilks, D.S., 1995, Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.
  36. Wingo, M.T. and Cecil, D.J., 2010, Effects of vertical wind shear on tropical cyclone precipitation. Monthly Weather Review, 138, 645-662. https://doi.org/10.1175/2009MWR2921.1
  37. Xie, L., Yan, T., and Pietrafesa, L.J., 2005, Climatology and interannual variability of North Atlantic hurricane tracks. Journal of Climate, 18, 5370-5381. https://doi.org/10.1175/JCLI3560.1
  38. Xie, P. and Arkin, P.A., 1997, Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the Amican Meteorological Society, 2539-2558.