DOI QR코드

DOI QR Code

가까운 폭발적 항성생성은하의 분광 관측

Spectroscopy of Local Starburst Galaxies

  • 이철희 (경북대학교 지구과학교육과) ;
  • 심현진 (경북대학교 지구과학교육과)
  • Lee, Cheolhui (Department of Earth Science Education, Kyungpook National University) ;
  • Shim, Hyunjin (Department of Earth Science Education, Kyungpook National University)
  • 투고 : 2017.03.22
  • 심사 : 2017.06.08
  • 발행 : 2017.06.30

초록

가까운 은하에서 폭발적 항성생성은하의 분광 관측을 수행하여 별생성률이 높은 은하에서 별생성이 일어나는 시간 규모에 따라 방출선의 방출 기작, 별생성률, 항성질량, 금속함량 등의 물리량 혹은 물리량 상호 간의 관계가 어떻게 다른지를 살펴보았다. 관측 대상은 별생성 나이가 매우 어린 울프-레이에 은하 21개와 상대적으로 긴 시간 규모의 별생성이 진행 중인 자외선 초과복사 은하 13개로 보현산 천문대의 1.8 m 망원경과 4K CCD, 긴 슬릿 분광기를 이용해 광학영역에서의 스펙트럼을 얻었다. BPT 분석도표를 그려 관측된 은하들에서 기체를 이온화시키는 원인을 살펴보면 전체적으로는 별생성(약 50%)이 비항성적 요소인 활동은하핵(약 15%)에 비해 훨씬 높았다. 별생성과 활동은하핵이 모두 기여하는 경우도 전체의 35%였는데, 이러한 경우에 속하는 은하는 대부분 상대적으로 나이가 많을 것으로 추정되는 자외선 초과복사 은하였다. 관측된 은하의 항성질량 범위는 대부분 $10^{9-11}M_{\odot}$이고 별생성률은 $0.01-100M_{\odot}yr^{-1}$로, SDSS에서 관측된 은하들로 구성된 별생성 주계열에 위치한다. 울프-레이에 은하와 자외선 초과복사 은하들의 항성질량, 별생성률에서 큰 차이는 없었다. 또한 폭발적 항성생성은하는 질량-금속함량 관계를 보이며, 비슷한 항성질량을 가진 SDSS 은하와 비교했을 때 금속함량이 낮게 나타났다. 이는 이 은하들에서 별생성으로 인한 강한 피드백이 일어나고 있음을 보여준다.

We investigate the star formation rate, stellar mass, and gas-phase metallicity of local starburst galaxies with different star formation time scales based on their optical spectra. The observation is made using the longslit spectrograph attached to the 4K CCD on the Bohyunsan Optical Astronomy Observatory 1.8m telescope, targeting 21 Wolf-Rayet galaxies as young starbursts and 13 UV excess galaxies as slightly older starbursts. A Baldwin-Phillips-Terlevich diagram analysis shows that 50% of the observed targets are pure star-forming galaxies while only 15% are classified as Active Galactic Nuclei. Fraction of galaxies that reside in composite region is higher in UV excess galaxies than in Wolf-Rayet galaxies, suggesting that the AGN development requires extra time after the onset of the star formation. Most of the observed starburst galaxies have stellar masses of $10^{9-11}M_{\odot}$ and stellar formation rates of $0.01-100M_{\odot}yr^{-1}$, and their star formation rates are consistent with that of the SDSS star forming main sequence galaxies of similar stellar mass. There is no significant difference between Wolf-Rayet galaxies and UV excess galaxies in terms of the stellar mass and star formation rate. We also see a mass-metallicity relation for local starbursts with slightly lower metallicity for a given stellar mass, which implies the existence of a strong feedback activity due to the star formation in these galaxies.

키워드

참고문헌

  1. Baldwin, J.A., Phillips, M.M., and Terlevich, R., 1981, Classification parameters for the emission-line spectra of extragalactic objects, Publications of the Astronomical Society of the Pacific, 93(551), 5-19. https://doi.org/10.1086/130766
  2. Bang, J. and Ann, H.B., 2009, Star formation rate and AGN in barred galaxies, Journal of the Korean Earth Science Society, 30(1), 69-80. https://doi.org/10.5467/JKESS.2009.30.1.069
  3. Brinchmann, J., Charlot, S., White, S.D.M., et al., 2004, The physical properties of star-forming galaxies in the low-redshift Universe, Monthly Notices of the Royal Astronomical Society, 351(4), 1151-1179. https://doi.org/10.1111/j.1365-2966.2004.07881.x
  4. Brinchmann, J., Pettini, M., and Charlot, S., 2008, New insights into the stellar content and physical conditions of star-forming galaxies at z=2-3 from spectral modelling, Monthly Notices of the Royal Astronomical Society, 385(2), 769-782. https://doi.org/10.1111/j.1365-2966.2008.12914.x
  5. Calzetti, D., 2013, Star Formation Rate Indicators, In Falcon-Barroso, J. and Knapen, J. H. (eds.), Secular evolution of galaxies, Cambridge University Press, Cambridge, UK, 419-459.
  6. Calzetti, D., Armus, L., Bohlin, R.C., et al., 2000, The dust content and opacity of actively star-forming galaxies, The Astrophysical Journal, 533(2), 682-695. https://doi.org/10.1086/308692
  7. Conti, P.S., 1991, Wolf-Rayet galaxies-an introduction and a catalog, The Astrophysical Journal, 377, 115-125. https://doi.org/10.1086/170340
  8. Crowther, P.A., 2007, Physical properties of Wolf-Rayet stars, Annual Review of Astronomy and Astrophysics, 45, 177-219. https://doi.org/10.1146/annurev.astro.45.051806.110615
  9. Dominguez, A., Siana, B., Henry, A.L., et al., 2013, Dust extinction from Balmer decrements of star-forming galaxies at 0.75${\leq}$z${\leq}$1.5 with Hubble space telescope/wide-field-camera 3 spectroscopy from the WFC3 infrared spectroscopic parallel survey, The Astrophysical Journal, 763(2), 145-154. https://doi.org/10.1088/0004-637X/763/2/145
  10. Dopita, M.A., Kewley, L.J., Heisler, C.A., and Sutherland, R.S., 2000, A theoretical recalibration of the extragalactic HII region sequence, The Astrophysical Journal, 542(1), 224-234. https://doi.org/10.1086/309538
  11. Eom, H. and Shim. H., 2015, Properties of brightest cluster galaxies as a function of cluster classification type, Journal of the Korean Earth Science Society, 36(5), 427-436. https://doi.org/10.5467/JKESS.2015.36.5.427
  12. Fontatot, F., Lucia, G.D., Monaco, P., Somerville, R.S., and Santini, P., 2009, The many manifestations of downsizing: hierarchical galaxy formation models confront observations, Monthly Notices of the Royal Astronomical Society, 397(4), 1776-1790. https://doi.org/10.1111/j.1365-2966.2009.15058.x
  13. French, H.B., 1980, Galaxies with the spectra of giant HII regions, The Astrophysical Journal, 240, 41-59. https://doi.org/10.1086/158205
  14. Gal-Yam, A., Arcavi, I., Ofek, E.O., et al., 2014, A Wolf-Rayet-like progenitor of SN2013cu from spectral observations of a stellar wind, Nature, 509(7501), 471-474. https://doi.org/10.1038/nature13304
  15. Huang, S., Haynes, M. P., Giovanelli, R., and Brinchmann, J., 2012, The Arecibo Legacy Fast ALFA survey: The galaxy population detected by ALFALFA, The Astrophysical Journal, 756, 113-141. https://doi.org/10.1088/0004-637X/756/2/113
  16. Huchra, J.P., 1977, The nature of Markarian galaxies, The Astrophysical Journal Supplement Series, 35, 171-195. https://doi.org/10.1086/190474
  17. Juneau, S., Glazebrook, K., Crampton, D., et al., 2005, Cosmic star formation history and its dependence on galaxy stellar mass, The Astrophysical Journal Letters, 619(2), L135-L138. https://doi.org/10.1086/427937
  18. Karthick, M.C., Lopez-Sanchez, A.R., Sahu, D.K., Sanwal, B.B., and Bisht, S., 2014, Photometric and spectroscopic studies of star-forming regions within Wolf-Rayet galaxies, Monthly Notices of the Royal Astronomical Society, 439(1), 157-178. https://doi.org/10.1093/mnras/stt2301
  19. Kauffmann, G., Heckman, T.M., White, S.D., et al., 2003, Stellar masses and star formation histories for 105 galaxies from the Sloan digital sky survey, Monthly Notices of the Royal Astronomical Society, 341(1), 33-53. https://doi.org/10.1046/j.1365-8711.2003.06291.x
  20. Kennicutt, R.C., 1998, Star formation in galaxies along the Hubble sequence, Annual Review of Astronomy and Astrophysics, 36(1), 189-231. https://doi.org/10.1146/annurev.astro.36.1.189
  21. Kewley, L.J., Dopita, M.A., Sutherland, R.S., Heisler, C.A., and Trevena, J., 2001, Theoretical modeling of starburst galaxies, The Astrophysical Journal, 556(1), 121-140. https://doi.org/10.1086/321545
  22. Lopez-Sanchez, A.R. and Esteban, C., 2008, Massive star formation in Wolf-Rayet galaxies I. Optical and NIR photometric results, Astronomy and Astrophysics, 491(1), 131-156. https://doi.org/10.1051/0004-6361:200809409
  23. Lopez-Sanchez, A.R. and Esteban, C., 2010, Massive star formation in Wolf-Rayet galaxies IV. Colours, chemicalcomposition analysis and metallicity-luminosity relations, Astronomy and Astrophysics, 517, A85-A112. https://doi.org/10.1051/0004-6361/201014156
  24. Lopez-Sanchez, A.R., 2010, Massive star formation in Wolf-Rayet galaxies V. Star-formation rates, masses and the importance of galaxy interactions, Astronomy and Astrophysics, 521, A63-A93. https://doi.org/10.1051/0004-6361/201014295
  25. Madau, P. and Dickinson, M., 2014, Cosmic star-formation history, Annual Review of Astronomy and Astrophysics, 52, 415-486. https://doi.org/10.1146/annurev-astro-081811-125615
  26. Markarian, B.E., 1967, Galaxies with an ultraviolet continuum, Astrophysics, 3(1), 24-38. https://doi.org/10.1007/BF01006024
  27. Markarian, B.E., Lipovetsky, V.A., Stepanian, J.A., Erastova, L.K., and Shapovalova, A.I., 1989, The first Byurakan survey-a catalogue of galaxies with ultraviolet continuum, Soobshcheniya Spetsial'noj Astrofizicheskoj Observatorii, 62, 5
  28. Meynet, G. and Maeder, A., 2005, Stellar evolution with rotation XI. Wolf-Rayet star populations at different metallicities, Astronomy and Astrophysics, 429(2), 581-598. https://doi.org/10.1051/0004-6361:20047106
  29. Moustakas, J., Coil, A.L., Aird, J., et al., 2013, PRIMUS: Constraints on star formation quenching and galaxy merging, and the evolution of the stellar mass function from z=0-1, The Astrophysical Journal, 767(1), 50-83. https://doi.org/10.1088/0004-637X/767/1/50
  30. Noeske, K.G., Weiner, B.J., Faber, S.M., et al., 2007, Star formation in AEGIS field galaxies since z=1.1: The dominance of gradually declining star formation, and the main sequence of star-forming galaxies, The Astrophysical Journal Letters, 660(1), L43-L46. https://doi.org/10.1086/517926
  31. Perez-Montero, E., Contini, T., Lamareille, F., et al., 2013, The cosmic evolution of oxygen and nitrogen abundances in star-forming galaxies over the past 10Gyr, Astronomy and Astrophysics, 549, A25-A38. https://doi.org/10.1051/0004-6361/201220070
  32. Salpeter, E.E., 1955, The luminosity function and stellar evolution, The Astrophysical Journal, 121, 161-167. https://doi.org/10.1086/145971
  33. Schaerer, D., Contini, T., and Pindao, M., 1999, New catalogue of Wolf-Rayet galaxies and high-excitation extra-galactic HII regions, Astronomy and Astrophysics Supplement Series, 136(1), 35-52. https://doi.org/10.1051/aas:1999197
  34. Shim, H., 2013, Global star formation efficiency of local galaxies, Journal of the Korean Earth Science Society, 34(5), 407-414. https://doi.org/10.5467/JKESS.2013.34.5.407
  35. Shim, H. and Chary, R. R., 2013, Dissection of H$\alpha$ emitters: Low-z analogs of z>4 star-forming galaxies, The Astrophysical Journal, 765(1), 26-36. https://doi.org/10.1088/0004-637X/765/1/26
  36. Tremonti, C.A., Heckman, T.M., Kauffmann, G., et al., 2004, The origin of the mass-metallicity relation: insights from 53,000 star-forming galaxies in the Sloan digital sky survey. The Astrophysical Journal, 613(2), 898-913. https://doi.org/10.1086/423264
  37. Vacca, W.D. and Conti, P.S., 1992, Optical spectrophotometry of Wolf-Rayet galaxies, The Astrophysical Journal, 401, 543-558. https://doi.org/10.1086/172085
  38. Veilleux, S. and Osterbrock, D. E., 1987, Spectral classification of emission-line galaxies, The Astrophysical Journal Supplement Series, 63, 295-310. https://doi.org/10.1086/191166
  39. Wilkins, S.M., Gonzalez-Perez, V., Baugh, C.M., et al., 2013, Single-colour diagnostics of the mass-to-light ratio I. Predictions from galaxy formation models. Monthly Notices of the Royal Astronomical Society, 431(1), 430-439. https://doi.org/10.1093/mnras/stt192