DOI QR코드

DOI QR Code

Heavy metal toxicity mitigation by iron-containing superoxide dismutase 2 of Streptomyces coelicolor A3(2)

Streptomyces coelicolor A3(2)의 철 함유 superoxide dismutase 2에 의한 중금속 독성 완화

  • 김재헌 (단국대학교 자연과학대학 미생물학과) ;
  • 이현경 (단국대학교 자연과학대학 미생물학과)
  • Received : 2017.03.21
  • Accepted : 2017.05.25
  • Published : 2017.06.30

Abstract

Bacterial growth inhibition by lead, zinc and cadmium was measured by using modified Tris minimal medium. The toxicity against Escherichia coli strain was in the order of zinc> cadmium> lead, and the Escherichia coli strain overexpressing iron-containing superoxide dismutase 2 of Streptomyces coelicolor A3(2) was found to have resistance to heavy metals.

납, 아연, 카드뮴에 의한 미생물 생장 저해를 변형된 Tris minimal medium을 사용하여 측정하였다. Escherichia coli 균주에 대한 독성의 세기는 아연 > 카드뮴 > 납 순으로 나타났고 Streptomyces coelicolor A3(2)의 철 함유 superoxide dismutase 2를 과발현하는 E. coli 균주는 중금속 저항성이 증가되었음을 알 수 있었다.

Keywords

References

  1. Babich, H. and Stotzky, G. 1978.Toxicity of zinc to fungi, bacteria, and coliphages: Influence of chloride ions. Appl. Environ. Microbiol. 36, 906-914.
  2. Banjerdkij, P., Vattanaviboon, P., and Mongkolsuk, S. 2005. Exposure to cadmium elevates expression of genes in the OxyR and OhrR regulons and induces cross-resistance to peroxide killing treatment in Xanthomonas campestris. Appl. Environ. Microbiol. 71, 1843-1849. https://doi.org/10.1128/AEM.71.4.1843-1849.2005
  3. Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
  4. Bruins, M.R., Kapil, S., and Oehme, F.W. 2000. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 45, 198-207. https://doi.org/10.1006/eesa.1999.1860
  5. Capasso, C., Nazzaro, F., Marulli, F., Capasso, A., La Cara, F., and Parisi, E. 1996. Identification of a high-molecular-weight cadmiumbinding protein in copper-resistant Bacillus acidocaldarius cells. Res. Microbiol.147, 287-296. https://doi.org/10.1016/0923-2508(96)81389-1
  6. Choudhury, R. and Srivastava, S. 2001. Zinc resistance mechanism in bacteria. Curr. Sci. 81, 768-775.
  7. Chung, H.J., Kim, E.J., Suh, B., Choi, J.H., and Roe, J.H. 1999. Duplication genes for Fe-containing superoxide dismutase in Streptomyces coelicolor A3(2). Gene 231, 87-93. https://doi.org/10.1016/S0378-1119(99)00088-8
  8. Duruibe, J.O., Ogwuegbu, M.O.C., and Egwurugwu, J.N. 2007. Heavy metal pollution and human biotoxic effects. Int. J. Phy. Sci. 2, 112-118.
  9. Duxbury, T. 1981. Toxicity of heavy metals to soil bacteria. FEMS Microbiol. Lett. 11, 217-220. https://doi.org/10.1111/j.1574-6968.1981.tb06967.x
  10. Kim, J.H., Han, K.Y., Jung, H.J., and Lee, J. 2014. Iron containing superoxide dismutase of Streptomyces subrutilus P5 increases bacterial heavy metal resistance by sequestration. Korean J. Microbiol. 50, 179-184. https://doi.org/10.7845/kjm.2014.4053
  11. Liu, D., Li, Z., Li, W., Zhong, Z., Xu, J., Ren, J., and Ma, Z. 2013. Adsorption behavior of heavy metal ions from aqueous solution by soy protein hollow microspheres. Ind. Eng. Chem. Res. 52, 11036-11044. https://doi.org/10.1021/ie401092f
  12. Mamtani, R., Stern, P., Dawood, I., and Cheema, S. 2011. Metals and disease: A global primary health care perspective. J. Toxicol. 2011, 1-11.
  13. McDevitt, C.A., Ogunniyi, O.D., Valkov, E., Lawrence, M.C., Kobe, B., McEwan, A.G., and Paton, J.C. 2011. A molecular mechanism for bacterial susceptibility to zinc. PLoS Pathog. 7, e1002357. https://doi.org/10.1371/journal.ppat.1002357
  14. Nies, D.H. 1999. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51, 730-750. https://doi.org/10.1007/s002530051457
  15. Norte, V.A., Stapleton, M.R., and Green, J. 2003. PhoP-responsive expression of the Salmonella enterica Serovar Typhimurium slyA gene. J. Bacteriol. 185, 3508-3514. https://doi.org/10.1128/JB.185.12.3508-3514.2003
  16. Olson, J.W. and Maier, R.J. 2000. Dual roles of Bradyrhizobium japonicum nickel in protein in nickel storage and GTP-dependent Ni mobilization. J. Bacteriol. 182, 1702-1705. https://doi.org/10.1128/JB.182.6.1702-1705.2000
  17. Ong, C.Y., Walker, M.J., and McEwan, A.G. 2015. Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes. Sci. Rep. 5, 10799. https://doi.org/10.1038/srep10799
  18. Rathnayake, I.V.N., Megharaj, M., Krishnamurti, G.S.R., Bolan, N.S., and Naidu, R. 2013. Heavy metal toxicity to bacteria - Are the existing growth media accurate enough to determine heavy metal toxicity? Chemosphere 90, 1195-1200. https://doi.org/10.1016/j.chemosphere.2012.09.036
  19. So, N., Rho, J., Lee, S., Hancock, I.C., and Kim, J. 2001. A leadabsorbing protein with superoxide dismutase activity from Streptomyces subrutilus. FEMS Microbiol. Lett. 194, 93-98. https://doi.org/10.1111/j.1574-6968.2001.tb09452.x