DOI QR코드

DOI QR Code

Draft genome sequence of Lactobacillus salivarius KLW001 isolated from a weaning piglet

이유자돈으로부터 분리한 Lactobacillus salivarius KLW001의 유전체 분석

  • Jin, Gwi-Deuk (Department of Animal Life Science, Kangwon National University) ;
  • Lee, Jun-Yeong (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Eun Bae (Department of Animal Life Science, Kangwon National University)
  • 진귀득 (강원대학교 동물생명과학과) ;
  • 이준영 (서울대학교 농생명공학부) ;
  • 김은배 (강원대학교 동물생명과학과)
  • Received : 2017.05.10
  • Accepted : 2017.05.17
  • Published : 2017.06.30

Abstract

Lactobacillus salivarius KLW001, a species of lactic acid bacteria (LAB), was isolated from a weaning piglet in a swine farm, South Korea, to develop an antimicrobial probiotic strain for piglets. Herein, we report the draft genome sequence of the strain. The genome contains 2,326,706 bp with a G+C content of 33.0% in 166 contigs (${\geq}500bp$). From the genome, we found out 4 genes related to antibiotic resistance, 36 genes for phages, 3 genes for bile hydrolysis, and 27 CRISPR spacers.

이유자돈용 생균제 개발을 위해, 본 연구자들은 유산균의 일종인 Lactobacillus salivairus KLW001 균주를 대한민국 양돈가에서 사육 중인 이유자돈으로부터 분리하였다. 이 균주는 K88 antigen-positive Escherichia coli, Salmonella enterica serovar Typhimurium에 대한 항균 활성이 타 균주보다 우수하여, 우리는 이 균주의 유전체를 분석하였다. 유전체 초안 속의 166개 Contig (${\geq}500bp$)들에서, G+C content (%)가 33.0%였고, 2,326,706 bp 크기의 염기서열을 확보할 수 있었다. 유전체 초안으로부터 항생제 저항 유전자 4개, Phage 관련 유전자 36개, Bile 대사 유전자 3개, CRISPR Spacer 27개를 확인하였다.

Keywords

References

  1. Ahn, J.S., Park, B.K., Kim, Y.J., Hong, B.C., Ra, C.S., Kim, M.J., and Shin, J.S. 2016. Effects of fermentation using microorganisms on feed value of Astragalus membranaceus by-products. Ann. Anim. Resour. Sci. 27, 44-56. https://doi.org/10.12718/AARS.2016.27.1.44
  2. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455-477. https://doi.org/10.1089/cmb.2012.0021
  3. Grissa, I., Vergnaud, G., and Pourcel, C. 2007. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 35, W52-W57. https://doi.org/10.1093/nar/gkm360
  4. Kim, E.B., Jin, G.D., Lee, J.Y., and Choi, Y.J. 2016. Genomic features and niche-adaptation of Enterococcus faecium strains from Korean soybean-fermented foods. PLoS One 11, e0153279. https://doi.org/10.1371/journal.pone.0153279
  5. Kopit, L.M., Kim, E.B., Siezen, R.J., Harris, L.J., and Marco, M.L. 2014. Safety of the surrogate microorganism Enterococcus faecium NRRL B-2354 for use in thermal process validation. Appl. Environ. Microbiol. 80, 1899-1909. https://doi.org/10.1128/AEM.03859-13
  6. Liu, B. and Pop, M. 2009. ARDB-antibiotic resistance genes database. Nucleic Acids Res. 37, D443-D447. https://doi.org/10.1093/nar/gkn656
  7. Martin, M. 2011. Cutadapt removes adapter sequences from highthroughput sequencing reads. EMBnet. J. 17, 11-13.
  8. Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., Disz, T., Edwards, R.A., Gerdes, S., Parrello, B., Shukla, M., et al. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42, D206-D214. https://doi.org/10.1093/nar/gkt1226
  9. Ruiz, L., Margolles, A., and Sanchez, B. 2013. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front. Microbiol. 4, 396.
  10. Sung, H.G. 2013. Effects of fermented phytogenics on fecal odour and performance in laying hens. Ann. Anim. Resour. Sci. 24, 29-37. https://doi.org/10.12718/AARS.2013.24.1.29
  11. Yeo, S., Lee, S., Park, H., Shin, H., Holzapfel, W., and Huh, C.S. 2016. Development of putative probiotics as feed additives: validation in a porcine-specific gastrointestinal tract model. Appl. Environ. Microbiol. 100, 10043-10054.

Cited by

  1. Determination of Optimized Growth Medium and Cryoprotective Additives to Enhance the Growth and Survival of Lactobacillus salivarius vol.28, pp.5, 2018, https://doi.org/10.4014/jmb.1801.01059