DOI QR코드

DOI QR Code

네트워크 중심성 지표를 이용한 서울 수도권 지하철망 특성 분석

Analysis of Seoul Metropolitan Subway Network Characteristics Using Network Centrality Measures

  • Lee, Jeong Won (Department of Industrial and Information Systems Engineering, Seoul National University of Science and Technology) ;
  • Lee, Kang Won (Department of Industrial and Information Systems Engineering, Seoul National University of Science and Technology)
  • 투고 : 2017.04.04
  • 심사 : 2017.05.30
  • 발행 : 2017.06.30

초록

본 연구에서는 네트워크 중심성 지표를 사용하여 지하철 네트워크의 개별 노드의 중요성을 분석하고 이로부터 한국 지하철 네트워크의 특성을 분석하였다. 중심성 측도로 매개, 근접 그리고 차수 중심성을 사용하였다. 본 연구에서는 기존에 제안된 매개 중심성 지표와 승객들의 실제 흐름양을 함께 고려한 가중 매개 중심성 지표를 새롭게 제안하였다. 그리고 본 연구에서 제안한 여러 중심성 지표들 사이의 상관관계를 조사함으로서 서울 수도권 지하철과 승객 흐름의 구조적 특성 등을 조사하였다. 아울러 승객들 흐름의 편중 현상을 조사하기 위하여 멱분포(Power-law) 분석을 수행하여 결과 분석의 신빙성을 더하였다.

In this study we investigate the importance of the subway station using network centrality measures. For centrality measures, we have used betweenness centrality, closeness centrality, and degree centrality. A new measure called weighted betweenness centrality is proposed, that combines both traditional betweenness centrality and passenger flow between stations. Through correlation analysis and power-law analysis of passenger flow on the Seoul metropolitan subway network, we have shown that weighted betweenness centrality is a meaningful and practical measure. We have also shown that passenger flow between any two stations follows a highly skewed power-law distribution.

키워드

참고문헌

  1. S. Derrible (2012) Network Centrality of Metro Systems, PloS One, 7(7), e40575, pp. 1-10.
  2. V. Latora, M. Marchiori (2001) Efficient Behavior of Small-World Networks, Physical Review Letters, 87(19), P.198701. https://doi.org/10.1103/PhysRevLett.87.198701
  3. M.L. Mouronte (2014) Topological Analysis of the Subway Network of Madrid, International Multi-Conference on Computing in the Global Information Technology, Seville, Spain, pp. 9-13.
  4. S. Stoilova, V. Stoev (2015) An Application of the Graph Theory Which Examines the Metro Network, Transport Problems, 10(2), pp. 35-48.
  5. B. Leng, X. Zhao, X. Zhang (2014) Evaluating the Evolution of Subway Networks: Evidence from Beijing Subway Network, Europhysics Letters, 105(5), P.58004. https://doi.org/10.1209/0295-5075/105/58004
  6. S.Y. Zang, K.W. Lee (2016) Characteristics and Efficiency Analysis of Evolutionary Seoul Metropolitan Subway Network, Journal of the Korean Society for Railway, 19(3), pp. 388-396. https://doi.org/10.7782/JKSR.2016.19.3.388
  7. C.P. Monterola, M.A. Ramli, G.L. Khoon, T.H. Guang (2014) A Method to Ascertain Rapid Transit System's Throughput Distribution Using Network Analysis, Procedia Computer Science, 29, pp. 1621-1630. https://doi.org/10.1016/j.procs.2014.05.147
  8. A. H'aznagy, I. Fi, A. Londo, T. N'emeth (2015) Complex Network Analysis of Public Transportation Networks: A Comprehensive Study, 2015 Models and Technology for Intelligent Transport Systems, Budapest, Hungary, pp.371-378.
  9. Y.Y. Cheng, R.K. W. Lee, E.P. Lim, F. Zhu (2015) Measuring Centralities for Transportation Networks beyond Structures, Applications of Social Media and Social Network Analysis, Springer International Publishing, Switzerland, pp. 23-39.
  10. Seoul Open Data Plaza, http://data.seoul.go.kr (Accessed 30 January 2016)
  11. Korea Transportation Database, http://www.ktdb.go.kr (Accessed 30 January 2016)
  12. Q. XU, B.H. Mao, Y. Bai (2016) Network Structure of Subway Passenger Flow, Journal of Statistical Mechanics; Theory & Experiment, pp. 1-18.

피인용 문헌

  1. Network Betweenness Centrality and Passenger Flow Analysis of Seoul Metropolitan Subway Lines vol.41, pp.2, 2018, https://doi.org/10.11627/jkise.2018.41.2.095