Acknowledgement
Supported by : Sungshin Women’s University
References
- George M. BERGMAN, The logarithmic limit-set of an algebraic variety, Trans. Amer. Math. Soc. 157 (1971), 459-469. https://doi.org/10.1090/S0002-9947-1971-0280489-8
- David A. Cox, John B. LITTLE, Henry K. SCHENCK, Toric varieties, Graduate Studies in Mathematics 124 (2011), American Mathematical Society, Providence, RI, 267, 269, 273, 288, 289, 293, 311, 322.
- I. M. GELFAND, M. M. KAPRANOV, A. V. ZELEVINSKY, Discriminants, Resultants and multidimensional determinants. Modern Birkhauser Classics, Birkhauser Boston Inc., Boston, MA, 2008, Reprint of the 1994 edition.
- Andreas GATHMANN, Hannah MARKWIG, The Caporaso-Harris formula and plane relative Gromov-Witten invariants in tropical geometry, Math. Ann. 338(4) (2007), 845-868. https://doi.org/10.1007/s00208-007-0092-4
- Andreas GATHMANN, Hannah MARKWIG, The numbers of tropical plane curves through points in general position, J. Reine Angew. Math. 602 (2007), 155-177.
- Andreas GATHMANN, Hannah MARKWIG, Kontsevich's formula and the WDVV equations in tropical geometry, Adv. Math. 217(2) (2008), 537-560. https://doi.org/10.1016/j.aim.2007.08.004
- Young Rock KIM, Yong-Su SHIN, A Study on Various Properties of Tropical Plane Curves. The Korean Journal for History of Mathematics 29(5) (2016), 295-314. https://doi.org/10.14477/jhm.2016.29.5.295
- Grigory MIKHALKIN, Decomposition into pairs-of-pants for complex algebraic hypersurfaces, Topology 43(5) (2004), 1035-1065. https://doi.org/10.1016/j.top.2003.11.006
- Grigory MIKHALKIN, Enumerative tropical algebraic geometry in R2, J. Amer. Math. Soc. 18(2) (2005), 313-377. https://doi.org/10.1090/S0894-0347-05-00477-7
- Mounir NISSE, Frank SOTTILE, The phase limit set of a variety, Algebra Number Theory 7(2) (2013), 339-352. https://doi.org/10.2140/ant.2013.7.339
- Mikael PASSARE, Hans RULLGARD, Amoebas, Monge-Ampere measures, and triangulations of the Newton polytope, Duke Math. J. 121(3) (2004), 481-507. https://doi.org/10.1215/S0012-7094-04-12134-7
- Mikael PASSARE, August TSIKH, Amoebas: their spines and their contours, In Idempotent mathematics and mathematical physics, volume 377 of Contemp. Math., 275-288. Amer. Math. Soc., Providence, RI, 2005.
- Kevin PURBHOO, A Nullstellensatz for amoebas, Duke Math. J. 141(3) (2008), 407-445. https://doi.org/10.1215/00127094-2007-001
- Bernd STURMFELS, Jenia TEVELEV, Josephine YU, The Newton polytope of the implicit equation, Mosc. Math. J. 7(2) (2007), 327-346, 29, 109, 116, 306, 309.
- Bernd STURMFELS, Josephine YU, Tropical implicitization and mixed fiber polytopes, Software for algebraic geometry, IMA Vol. Math. Appl. 148 (2008), 114-131, Springer, New York, 29, 109, 116.
- Thorsten THEOBALD, Computing amoebas, Experiment. Math. 11(4) (2002), 513-526. https://doi.org/10.1080/10586458.2002.10504703