DOI QR코드

DOI QR Code

무선 센서 망에서 시간적 이득을 활용한 향상된 실시간 전송 방안

Improved Real-time Transmission Scheme using Temporal Gain in Wireless Sensor Networks

  • 투고 : 2017.03.16
  • 심사 : 2017.07.06
  • 발행 : 2017.10.15

초록

무선 센서 망에서 실시간 전송 연구들은 실시간 요구사항을 만족시키기 위해 소스 노드부터 싱크 노드까지 응용에서 요구되는 전달 속도보다 높은 전달 속도를 갖는 노드를 이용하는 방안을 제안한다. 이 요구 전달 속도는 패킷이 싱크에 도달하기까지 고정되기 때문에, 전송 범위 내 실시간 요구사항을 만족하는 노드가 없는 혼잡 지역에서 실시간 전송을 보장하기 어렵다. 이 방식은 싱크 노드에 가까워질수록 패킷의 실제 전달 속도는 높아지는 특성을 갖는다. 즉, 패킷은 실시간 전송을 만족하는 시간보다 이른 시간에 싱크 노드에 전달될 수 있다. 본 논문은 패킷 전달 과정에서 발생하는 시간적 이득을 이용하여 패킷의 전달 속도를 조절함으로써 향상된 실시간 전송 방안을 제안한다. 송신 노드는 수신된 패킷 정보를 이용하여 다음 전달 노드를 선택하기 위한 요구 전달 속도를 재계산한다. 시뮬레이션 결과는 실시간 전송관점에서 제안 방안이 기존 방안들보다 실시간 전송 성공률이 향상됨을 보인다.

Real-time transmission studies in wireless sensor networks propose a mechanism that exploits a node that has a higher delivery speed than the desired delivery speed in order to satisfy real-time requirement. The desired delivery speed cannot guarantee real-time transmission in a congested area in which none of the nodes satisfy the requirement in one hop because the desired delivery speed is fixed until the packet reaches the sink. The feature of this mechanism means that the packet delivery speed increases more than the desired delivery speed as the packet approaches closer to the sink node. That is, the packet can reach the sink node earlier than the desired time. This paper proposes an improved real-time transmission by controlling the delivery speed using the temporal gain which occurs on the packet delivery process. Using the received data from a previous node, a sending node calculates the speed to select the next delivery node. The node then sends a packet to a node that has a higher delivery speed than the recalculated speed. Simulation results show that the proposed mechanism in terms of the real-time transmission success ratio is superior to the existing mechanisms.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. Ian F. Akyildiz, et al., "A Survey on Sensor Networks," IEEE Commun. Mag., Vol. 40, No. 8, pp. 102-114, Aug. 2002. https://doi.org/10.1109/MCOM.2002.1024422
  2. T. He, et al., "A Spatiotemporal Communication Protocol for Wireless Sensor Networks," IEEE Trans. Parallel Distrib. Syst., Vol. 16, No. 10, pp. 995-1006, Oct. 2005. https://doi.org/10.1109/TPDS.2005.116
  3. E. Felemban, C. Lee, and E. Ekici, "MMSPEED: Multipath Multi-SPEED Protocol for QoS Guarantee of Reliability and Timeliness in Wireless Sensor Networks," IEEE Trans. Mob. Comput., Vol. 5, No. 6, pp. 738-754, Jun. 2006. https://doi.org/10.1109/TMC.2006.79
  4. Seungmin Oh, Yongbin Yim, Jeongcheol Lee, Hosung Park and Sang-Ha Kim, "A Novel Reliable Data Dissemination Protocol for Real-time Data in Wireless Sensor Networks," IEEE WCNC, pp. 1988-1992, April, 2012.
  5. Seungmin Oh, Yongbin Yim, Jeongcheol Lee, Hosung Park, and S.-H. Kim, "An Opportunistic Routing for Real-time Data in Wireless Sensor Networks," IEEE WCNC, pp. 1157-1162, Apr. 2013.
  6. H. K. Deva Sarma, R. Mall, and A. Kar, "E2R2: Energy-Efficient and Reliable Routing for Mobile Wireless Sensor Networks," IEEE Systems Journal, Vol. 10, No. 2, pp. 604-616, Jun. 2016. https://doi.org/10.1109/JSYST.2015.2410592
  7. S. Krit, M. Benaddy, B. E. Habil, J. Laassiri, and E. H. Said, "Reliability of transport data and energy efficient in Wireless Sensor Networks: A literature survey," International Conference on Engineering & MIS, pp. 1-4, Sep. 2016.
  8. M. A. Kafi, D. Djenouri, J. Ben-Othman, and N. Badache, "Congestion Control Protocols in Wireless Sensor Networks: A Survey," IEEE Communications Surveys & Tutorials, Vol. 16, No. 3, pp. 1369-1390, Mar. 2014. https://doi.org/10.1109/SURV.2014.021714.00123
  9. C. Sergiou, V. Vassiliou, and A. Paphitis, "Hierarchical Tree Alternative Path (HTAP) algorithm for congestion control in wireless sensor networks," Ad Hoc Networks, Vol. 11, No. 1, pp. 257-272, Jan. 2013. https://doi.org/10.1016/j.adhoc.2012.05.010
  10. S. Oh, J. Jung, J. Lee, H. Park, S. Kim, "Communication Protocol for Sink Mobility through 1-level Multi-hops Clusters In Wireless Sensor Networks," KIISE, Vol. 36, No. 2D, pp. 226-230, 2009.
  11. D. Goyal, and M. R. Tripathy, "Routing Protocols in Wireless Sensor Networks: A Survey," 2012 Second International Conference on Advanced Computing & Communication Technologies (ACCT), pp. 474-480, Mar. 2012.
  12. M. Onur Ergin, Adam Wolisz, "Node Position Discovery in Wireless Sensor Networks," 2012 9th Workshop on Positioning Navigation and Communication (WPNC), pp. 157-162, Germany, Dresden, Mar. 2012.
  13. T. Nowak, A. Koelpin, F. Dressler, M. Hartmann, L. Patino, and J. Thielecke, "Combined localization and data transmission in energy-constrained wireless sensor networks," IEEE Topical Conference on Wireless Sensors and Sensor Networks, Jan. 2015.
  14. Junyoung Heo, Jiman Hong, and Yookun Cho, "EARQ: Energy Aware Routing for Real-time and Reliable Communication in Wireless Industrial Sensor Networks," IEEE Transactions on Industrial Informatics, Vol. 5, No. 1, pp. 3-11, Feb. 2009. https://doi.org/10.1109/TII.2008.2011052