DOI QR코드

DOI QR Code

Inhibitors of DNA methylation support TGF-β1-induced IL11 expression in gingival fibroblasts

  • Sufaru, Irina-Georgeta (Department of Oral Biology, Medical University of Vienna) ;
  • Beikircher, Gabriel (AIT-Molecular Diagnostics, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH) ;
  • Weinhaeusel, Andreas (AIT-Molecular Diagnostics, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH) ;
  • Gruber, Reinhard (Department of Oral Biology, Medical University of Vienna)
  • Received : 2016.06.16
  • Accepted : 2017.02.07
  • Published : 2017.04.30

Abstract

Purpose: Oral wound healing requires gingival fibroblasts to respond to local growth factors. Epigenetic silencing through DNA methylation can potentially decrease the responsiveness of gingival fibroblasts to local growth factors. In this study, our aim was to determine whether the inhibition of DNA methylation sensitized gingival fibroblasts to transforming growth factor-${\beta}1$ (TGF-${\beta}1$). Methods: Gingival fibroblasts were exposed to 5-aza-2'-deoxycytidine (5-aza), a clinically approved demethylating agent, before stimulation with TGF-${\beta}1$. Gene expression changes were evaluated using quantitative polymerase chain reaction (PCR) analysis. DNA methylation was detected by methylation-sensitive restriction enzymes and PCR amplification. Results: We found that 5-aza enhanced TGF-${\beta}1$-induced interleukin-11 (IL11) expression in gingival fibroblasts 2.37-fold (P=0.008). 5-aza had no significant effects on the expression of proteoglycan 4 (PRG4) and NADPH oxidase 4 (NOX4). Consistent with this, 5-aza caused demethylation of the IL11 gene commonly next to a guanosine (CpG) island in gingival fibroblasts. The TGF-${\beta}$ type I receptor kinase inhibitor SB431542 impeded the changes in IL11 expression, indicating that the effects of 5-aza require TGF-${\beta}$ signaling. 5-aza moderately increased the expression of TGF-${\beta}$ type II receptor (1.40-fold; P=0.009), possibly enhancing the responsiveness of fibroblasts to TGF-${\beta}1$. As part of the feedback response, 5-aza increased the expression of the DNA methyltransferases 1 (DNMT1) (P=0.005) and DNMT3B (P=0.002), which are enzymes responsible for gene methylation. Conclusions: These in vitro data suggest that the inhibition of DNA methylation by 5-aza supports TGF-${\beta}$-induced IL11 expression in gingival fibroblasts.

Keywords

References

  1. Sculean A, Gruber R, Bosshardt DD. Soft tissue wound healing around teeth and dental implants. J Clin Periodontol 2014;41 Suppl 15:S6-22. https://doi.org/10.1111/jcpe.12206
  2. Szpaderska AM, Zuckerman JD, DiPietro LA. Differential injury responses in oral mucosal and cutaneous wounds. J Dent Res 2003;82:621-6. https://doi.org/10.1177/154405910308200810
  3. Finnson KW, Arany PR, Philip A. Transforming growth factor beta signaling in cutaneous wound healing: lessons learned from animal studies. Adv Wound Care (New Rochelle) 2013;2:225-37. https://doi.org/10.1089/wound.2012.0419
  4. Finnson KW, McLean S, Di Guglielmo GM, Philip A. Dynamics of transforming growth factor beta signaling in wound healing and scarring. Adv Wound Care (New Rochelle) 2013;2:195-214. https://doi.org/10.1089/wound.2013.0429
  5. Moustakas A, Heldin CH. The regulation of TGFbeta signal transduction. Development 2009;136:3699-714. https://doi.org/10.1242/dev.030338
  6. Elias JA, Zheng T, Whiting NL, Trow TK, Merrill WW, Zitnik R, et al. IL-1 and transforming growth factor-beta regulation of fibroblast-derived IL-11. J Immunol 1994;152:2421-9.
  7. Cuellar A, Reddi AH. Stimulation of superficial zone protein/lubricin/PRG4 by transforming growth factor-${\beta}$ in superficial zone articular chondrocytes and modulation by glycosaminoglycans. Tissue Eng Part A 2015;21:1973-81. https://doi.org/10.1089/ten.tea.2014.0381
  8. Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K, et al. Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2006;290:L661-73. https://doi.org/10.1152/ajplung.00269.2005
  9. Zimmermann M, Caballe-Serrano J, Bosshardt DD, Ankersmit HJ, Buser D, Gruber R. Bone-conditioned medium changes gene expression in bone-derived fibroblasts. Int J Oral Maxillofac Implants 2015;30:953-8. https://doi.org/10.11607/jomi.4060
  10. van der Kraan PM. Age-related alterations in TGF beta signaling as a causal factor of cartilage degeneration in osteoarthritis. Biomed Mater Eng 2014;24:75-80.
  11. Tichauer JE, Flores B, Soler B, Eugenin-von Bernhardi L, Ramirez G, von Bernhardi R. Age-dependent changes on $TGF{\beta}1$ Smad3 pathway modify the pattern of microglial cell activation. Brain Behav Immun 2014;37:187-96. https://doi.org/10.1016/j.bbi.2013.12.018
  12. Yan J, Zhang H, Yin Y, Li J, Tang Y, Purkayastha S, et al. Obesity- and aging-induced excess of central transforming growth factor-${\beta}$ potentiates diabetic development via an RNA stress response. Nat Med 2014;20:1001-8. https://doi.org/10.1038/nm.3616
  13. Jinno K, Takahashi T, Tsuchida K, Tanaka E, Moriyama K. Acceleration of palatal wound healing in Smad3-deficient mice. J Dent Res 2009;88:757-61. https://doi.org/10.1177/0022034509341798
  14. Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging Cell 2015;14:924-32. https://doi.org/10.1111/acel.12349
  15. Keating ST, El-Osta A. Epigenetics and metabolism. Circ Res 2015;116:715-36. https://doi.org/10.1161/CIRCRESAHA.116.303936
  16. Holroyd C, Harvey N, Dennison E, Cooper C. Epigenetic influences in the developmental origins of osteoporosis. Osteoporos Int 2012;23:401-10.
  17. Ren J, Singh BN, Huang Q, Li Z, Gao Y, Mishra P, et al. DNA hypermethylation as a chemotherapy target. Cell Signal 2011;23:1082-93. https://doi.org/10.1016/j.cellsig.2011.02.003
  18. Powell TR, Smith RG, Hackinger S, Schalkwyk LC, Uher R, McGuffin P, et al. DNA methylation in interleukin-11 predicts clinical response to antidepressants in GENDEP. Transl Psychiatry 2013;3:e300. https://doi.org/10.1038/tp.2013.73
  19. Sanders YY, Liu H, Liu G, Thannickal VJ. Epigenetic mechanisms regulate NADPH oxidase-4 expression in cellular senescence. Free Radic Biol Med 2015;79:197-205. https://doi.org/10.1016/j.freeradbiomed.2014.12.008
  20. Christman JK. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 2002;21:5483-95. https://doi.org/10.1038/sj.onc.1205699
  21. Varga AE, Stourman NV, Zheng Q, Safina AF, Quan L, Li X, et al. Silencing of the Tropomyosin-1 gene by DNA methylation alters tumor suppressor function of TGF-beta. Oncogene 2005;24:5043-52. https://doi.org/10.1038/sj.onc.1208688
  22. Xiao X, Tang W, Yuan Q, Peng L, Yu P. Epigenetic repression of Kruppel-like factor 4 through Dnmt1 contributes to EMT in renal fibrosis. Int J Mol Med 2015;35:1596-602. https://doi.org/10.3892/ijmm.2015.2189
  23. Neveu WA, Mills ST, Staitieh BS, Sueblinvong V. TGF-${\beta}1$ epigenetically modifies Thy-1 expression in primary lung fibroblasts. Am J Physiol Cell Physiol 2015;309:C616-26. https://doi.org/10.1152/ajpcell.00086.2015
  24. Bian EB, Huang C, Wang H, Chen XX, Zhang L, Lv XW, et al. Repression of Smad7 mediated by DNMT1 determines hepatic stellate cell activation and liver fibrosis in rats. Toxicol Lett 2014;224:175-85. https://doi.org/10.1016/j.toxlet.2013.10.038
  25. Kang SH, Bang YJ, Im YH, Yang HK, Lee DA, Lee HY, et al. Transcriptional repression of the transforming growth factor-beta type I receptor gene by DNA methylation results in the development of TGF-beta resistance in human gastric cancer. Oncogene 1999;18:7280-6. https://doi.org/10.1038/sj.onc.1203146
  26. Zhang Q, Rubenstein JN, Liu VC, Park I, Jang T, Lee C. Restoration of expression of transforming growth factor-beta type II receptor in murine renal cell carcinoma (renca) cells by 5-Aza-2'-deoxycytidine. Life Sci 2005;76:1159-66. https://doi.org/10.1016/j.lfs.2004.10.021
  27. Takai R, Uehara O, Harada F, Utsunomiya M, Chujo T, Yoshida K, et al. DNA hypermethylation of extracellular matrix-related genes in human periodontal fibroblasts induced by stimulation for a prolonged period with lipopolysaccharide derived from Porphyromonas gingivalis. J Periodontal Res 2016;51:508-17. https://doi.org/10.1111/jre.12330
  28. Zhang S, Barros SP, Moretti AJ, Yu N, Zhou J, Preisser JS, et al. Epigenetic regulation of TNFA expression in periodontal disease. J Periodontol 2013;84:1606-16.
  29. Kojima A, Kobayashi T, Ito S, Murasawa A, Nakazono K, Yoshie H. Tumor necrosis factor-alpha gene promoter methylation in Japanese adults with chronic periodontitis and rheumatoid arthritis. J Periodontal Res 2016;51:350-8. https://doi.org/10.1111/jre.12314
  30. Schulz S, Immel UD, Just L, Schaller HG, Glaser C, Reichert S. Epigenetic characteristics in inflammatory candidate genes in aggressive periodontitis. Hum Immunol 2016;77:71-5.
  31. Baptista NB, Portinho D, Casarin RC, Vale HF, Casati MZ, De Souza AP, et al. DNA methylation levels of SOCS1 and LINE-1 in oral epithelial cells from aggressive periodontitis patients. Arch Oral Biol 2014;59:670-8. https://doi.org/10.1016/j.archoralbio.2014.03.015
  32. Andia DC, Planello AC, Portinho D, da Silva RA, Salmon CR, Sallum EA, et al. DNA methylation analysis of SOCS1, SOCS3, and LINE-1 in microdissected gingival tissue. Clin Oral Investig 2015;19:2337-44. https://doi.org/10.1007/s00784-015-1460-1
  33. Larsson L, Castilho RM, Giannobile WV. Epigenetics and its role in periodontal diseases: a state-of-the-art review. J Periodontol 2015;86:556-68. https://doi.org/10.1902/jop.2014.140559
  34. Barros SP, Offenbacher S. Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response. Periodontol 2000 2014;64:95-110. https://doi.org/10.1111/prd.12000
  35. Mossman D, Kim KT, Scott RJ. Demethylation by 5-aza-2'-deoxycytidine in colorectal cancer cells targets genomic DNA whilst promoter CpG island methylation persists. BMC Cancer 2010;10:366. https://doi.org/10.1186/1471-2407-10-366
  36. Zhu WG, Hileman T, Ke Y, Wang P, Lu S, Duan W, et al. 5-aza-2'-deoxycytidine activates the p53/p21Waf1/Cip1 pathway to inhibit cell proliferation. J Biol Chem 2004;279:15161-6. https://doi.org/10.1074/jbc.M311703200
  37. Weinhaeusel A, Thiele S, Hofner M, Hiort O, Noehammer C. PCR-based analysis of differentially methylated regions of GNAS enables convenient diagnostic testing of pseudohypoparathyroidism type Ib. Clin Chem 2008;54:1537-45. https://doi.org/10.1373/clinchem.2008.104216
  38. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013;153:1194-217. https://doi.org/10.1016/j.cell.2013.05.039
  39. Gomes FS, de-Souza GF, Nascimento LF, Arantes EL, Pedro RM, Vitorino DC, et al. Topical 5-azacytidine accelerates skin wound healing in rats. Wound Repair Regen 2014;22:640-6. https://doi.org/10.1111/wrr.12213
  40. Stahli A, Bosshardt D, Sculean A, Gruber R. Emdogain-regulated gene expression in palatal fibroblasts requires TGF-${\beta}RI$ kinase signaling. PLoS One 2014;9:e105672. https://doi.org/10.1371/journal.pone.0105672

Cited by

  1. Current Concepts of Epigenetics and Its Role in Periodontitis vol.4, pp.4, 2017, https://doi.org/10.1007/s40496-017-0156-9
  2. ZNF718, HOXA4, and ZFP57 are differentially methylated in periodontitis in comparison with periodontal health: Epigenome‐wide DNA methylation pilot study vol.56, pp.4, 2021, https://doi.org/10.1111/jre.12868