References
- Sculean A, Gruber R, Bosshardt DD. Soft tissue wound healing around teeth and dental implants. J Clin Periodontol 2014;41 Suppl 15:S6-22. https://doi.org/10.1111/jcpe.12206
- Szpaderska AM, Zuckerman JD, DiPietro LA. Differential injury responses in oral mucosal and cutaneous wounds. J Dent Res 2003;82:621-6. https://doi.org/10.1177/154405910308200810
- Finnson KW, Arany PR, Philip A. Transforming growth factor beta signaling in cutaneous wound healing: lessons learned from animal studies. Adv Wound Care (New Rochelle) 2013;2:225-37. https://doi.org/10.1089/wound.2012.0419
- Finnson KW, McLean S, Di Guglielmo GM, Philip A. Dynamics of transforming growth factor beta signaling in wound healing and scarring. Adv Wound Care (New Rochelle) 2013;2:195-214. https://doi.org/10.1089/wound.2013.0429
- Moustakas A, Heldin CH. The regulation of TGFbeta signal transduction. Development 2009;136:3699-714. https://doi.org/10.1242/dev.030338
- Elias JA, Zheng T, Whiting NL, Trow TK, Merrill WW, Zitnik R, et al. IL-1 and transforming growth factor-beta regulation of fibroblast-derived IL-11. J Immunol 1994;152:2421-9.
-
Cuellar A, Reddi AH. Stimulation of superficial zone protein/lubricin/PRG4 by transforming growth factor-
${\beta}$ in superficial zone articular chondrocytes and modulation by glycosaminoglycans. Tissue Eng Part A 2015;21:1973-81. https://doi.org/10.1089/ten.tea.2014.0381 - Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K, et al. Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2006;290:L661-73. https://doi.org/10.1152/ajplung.00269.2005
- Zimmermann M, Caballe-Serrano J, Bosshardt DD, Ankersmit HJ, Buser D, Gruber R. Bone-conditioned medium changes gene expression in bone-derived fibroblasts. Int J Oral Maxillofac Implants 2015;30:953-8. https://doi.org/10.11607/jomi.4060
- van der Kraan PM. Age-related alterations in TGF beta signaling as a causal factor of cartilage degeneration in osteoarthritis. Biomed Mater Eng 2014;24:75-80.
-
Tichauer JE, Flores B, Soler B, Eugenin-von Bernhardi L, Ramirez G, von Bernhardi R. Age-dependent changes on
$TGF{\beta}1$ Smad3 pathway modify the pattern of microglial cell activation. Brain Behav Immun 2014;37:187-96. https://doi.org/10.1016/j.bbi.2013.12.018 -
Yan J, Zhang H, Yin Y, Li J, Tang Y, Purkayastha S, et al. Obesity- and aging-induced excess of central transforming growth factor-
${\beta}$ potentiates diabetic development via an RNA stress response. Nat Med 2014;20:1001-8. https://doi.org/10.1038/nm.3616 - Jinno K, Takahashi T, Tsuchida K, Tanaka E, Moriyama K. Acceleration of palatal wound healing in Smad3-deficient mice. J Dent Res 2009;88:757-61. https://doi.org/10.1177/0022034509341798
- Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging Cell 2015;14:924-32. https://doi.org/10.1111/acel.12349
- Keating ST, El-Osta A. Epigenetics and metabolism. Circ Res 2015;116:715-36. https://doi.org/10.1161/CIRCRESAHA.116.303936
- Holroyd C, Harvey N, Dennison E, Cooper C. Epigenetic influences in the developmental origins of osteoporosis. Osteoporos Int 2012;23:401-10.
- Ren J, Singh BN, Huang Q, Li Z, Gao Y, Mishra P, et al. DNA hypermethylation as a chemotherapy target. Cell Signal 2011;23:1082-93. https://doi.org/10.1016/j.cellsig.2011.02.003
- Powell TR, Smith RG, Hackinger S, Schalkwyk LC, Uher R, McGuffin P, et al. DNA methylation in interleukin-11 predicts clinical response to antidepressants in GENDEP. Transl Psychiatry 2013;3:e300. https://doi.org/10.1038/tp.2013.73
- Sanders YY, Liu H, Liu G, Thannickal VJ. Epigenetic mechanisms regulate NADPH oxidase-4 expression in cellular senescence. Free Radic Biol Med 2015;79:197-205. https://doi.org/10.1016/j.freeradbiomed.2014.12.008
- Christman JK. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 2002;21:5483-95. https://doi.org/10.1038/sj.onc.1205699
- Varga AE, Stourman NV, Zheng Q, Safina AF, Quan L, Li X, et al. Silencing of the Tropomyosin-1 gene by DNA methylation alters tumor suppressor function of TGF-beta. Oncogene 2005;24:5043-52. https://doi.org/10.1038/sj.onc.1208688
- Xiao X, Tang W, Yuan Q, Peng L, Yu P. Epigenetic repression of Kruppel-like factor 4 through Dnmt1 contributes to EMT in renal fibrosis. Int J Mol Med 2015;35:1596-602. https://doi.org/10.3892/ijmm.2015.2189
-
Neveu WA, Mills ST, Staitieh BS, Sueblinvong V. TGF-
${\beta}1$ epigenetically modifies Thy-1 expression in primary lung fibroblasts. Am J Physiol Cell Physiol 2015;309:C616-26. https://doi.org/10.1152/ajpcell.00086.2015 - Bian EB, Huang C, Wang H, Chen XX, Zhang L, Lv XW, et al. Repression of Smad7 mediated by DNMT1 determines hepatic stellate cell activation and liver fibrosis in rats. Toxicol Lett 2014;224:175-85. https://doi.org/10.1016/j.toxlet.2013.10.038
- Kang SH, Bang YJ, Im YH, Yang HK, Lee DA, Lee HY, et al. Transcriptional repression of the transforming growth factor-beta type I receptor gene by DNA methylation results in the development of TGF-beta resistance in human gastric cancer. Oncogene 1999;18:7280-6. https://doi.org/10.1038/sj.onc.1203146
- Zhang Q, Rubenstein JN, Liu VC, Park I, Jang T, Lee C. Restoration of expression of transforming growth factor-beta type II receptor in murine renal cell carcinoma (renca) cells by 5-Aza-2'-deoxycytidine. Life Sci 2005;76:1159-66. https://doi.org/10.1016/j.lfs.2004.10.021
- Takai R, Uehara O, Harada F, Utsunomiya M, Chujo T, Yoshida K, et al. DNA hypermethylation of extracellular matrix-related genes in human periodontal fibroblasts induced by stimulation for a prolonged period with lipopolysaccharide derived from Porphyromonas gingivalis. J Periodontal Res 2016;51:508-17. https://doi.org/10.1111/jre.12330
- Zhang S, Barros SP, Moretti AJ, Yu N, Zhou J, Preisser JS, et al. Epigenetic regulation of TNFA expression in periodontal disease. J Periodontol 2013;84:1606-16.
- Kojima A, Kobayashi T, Ito S, Murasawa A, Nakazono K, Yoshie H. Tumor necrosis factor-alpha gene promoter methylation in Japanese adults with chronic periodontitis and rheumatoid arthritis. J Periodontal Res 2016;51:350-8. https://doi.org/10.1111/jre.12314
- Schulz S, Immel UD, Just L, Schaller HG, Glaser C, Reichert S. Epigenetic characteristics in inflammatory candidate genes in aggressive periodontitis. Hum Immunol 2016;77:71-5.
- Baptista NB, Portinho D, Casarin RC, Vale HF, Casati MZ, De Souza AP, et al. DNA methylation levels of SOCS1 and LINE-1 in oral epithelial cells from aggressive periodontitis patients. Arch Oral Biol 2014;59:670-8. https://doi.org/10.1016/j.archoralbio.2014.03.015
- Andia DC, Planello AC, Portinho D, da Silva RA, Salmon CR, Sallum EA, et al. DNA methylation analysis of SOCS1, SOCS3, and LINE-1 in microdissected gingival tissue. Clin Oral Investig 2015;19:2337-44. https://doi.org/10.1007/s00784-015-1460-1
- Larsson L, Castilho RM, Giannobile WV. Epigenetics and its role in periodontal diseases: a state-of-the-art review. J Periodontol 2015;86:556-68. https://doi.org/10.1902/jop.2014.140559
- Barros SP, Offenbacher S. Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response. Periodontol 2000 2014;64:95-110. https://doi.org/10.1111/prd.12000
- Mossman D, Kim KT, Scott RJ. Demethylation by 5-aza-2'-deoxycytidine in colorectal cancer cells targets genomic DNA whilst promoter CpG island methylation persists. BMC Cancer 2010;10:366. https://doi.org/10.1186/1471-2407-10-366
- Zhu WG, Hileman T, Ke Y, Wang P, Lu S, Duan W, et al. 5-aza-2'-deoxycytidine activates the p53/p21Waf1/Cip1 pathway to inhibit cell proliferation. J Biol Chem 2004;279:15161-6. https://doi.org/10.1074/jbc.M311703200
- Weinhaeusel A, Thiele S, Hofner M, Hiort O, Noehammer C. PCR-based analysis of differentially methylated regions of GNAS enables convenient diagnostic testing of pseudohypoparathyroidism type Ib. Clin Chem 2008;54:1537-45. https://doi.org/10.1373/clinchem.2008.104216
- Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013;153:1194-217. https://doi.org/10.1016/j.cell.2013.05.039
- Gomes FS, de-Souza GF, Nascimento LF, Arantes EL, Pedro RM, Vitorino DC, et al. Topical 5-azacytidine accelerates skin wound healing in rats. Wound Repair Regen 2014;22:640-6. https://doi.org/10.1111/wrr.12213
-
Stahli A, Bosshardt D, Sculean A, Gruber R. Emdogain-regulated gene expression in palatal fibroblasts requires TGF-
${\beta}RI$ kinase signaling. PLoS One 2014;9:e105672. https://doi.org/10.1371/journal.pone.0105672
Cited by
- Current Concepts of Epigenetics and Its Role in Periodontitis vol.4, pp.4, 2017, https://doi.org/10.1007/s40496-017-0156-9
- ZNF718, HOXA4, and ZFP57 are differentially methylated in periodontitis in comparison with periodontal health: Epigenome‐wide DNA methylation pilot study vol.56, pp.4, 2021, https://doi.org/10.1111/jre.12868