Installation and Test Run of Comprehensive Analysis System for SF₆ in Power Equipment

Jeong Eun Lee, Kwang Sin Kim, Ah Reum Kim, Seoksoon Park, Kyeongsook Kim⁺

KEPCO Research Institute, Korea Electric Power Corporation, 105 Munji-Ro, Yuseong-gu, Daejeon, 34056, Korea † kskim9451@kepco.co.kr

Abstract

After SF₆, which is being used in power equipment as an insulating material, is classified as one of the 6 major greenhouse gases, the maintenance and the refinement of used SF₆ started to get attention. In regard to this, KEPCO Research Institute (KEPRI) is developing SF₆ recovery and refinement technology starting with establishing a comprehensive SF₆ analysis system. With the analysis system, qualitative and quantitative analyses of the purity and the impurities of SF₆ before and after recovery, and before and after refinement have been carried out. The analysis system is comprised of GC-DID (Gas Chromatograph -Discharge Ionization Detector) for trace impurities analysis, GC-TCD (Thermal Conductivity Detector) for analyses of SF₆ purity and major impurities concentration from several hundred ppm up to percent range, GC-MSD (Mass Selective Detector) for analyses of impurities not included in standard gas, FT-IR (Fourier Transform-Infrared) Spectrometer for analysis of HF and SO₂, and moisture analysis system is being used in the maintenance of power equipment and the development of SF₆ has been established. This analysis system is being used in the maintenance of power equipment and the development of SF₆ recovery and refinement technologies. In this paper, the analysis results of four samples - gas and liquid phase SF₆ samples from a SF₆ refinement system before and after refinement are presented.

_

Keywords: Gas Chromatography, FT-IR, SF₆ Refinement, SF₆ Analysis, Gas Insulated Switchgears (GIS)

I. INTRODUCTION

Currently, heavy electrical equipment switches, circuit breakers and power equipment including some of transformers in Korea are gas insulated with SF₆. Especially, Gas insulated switchgears (GIS) installed and operated in substations are using large amount of SF₆. In case of GIS, when routine detailed inspection is performed all SF₆ in GIS is extracted before the inspection. The extracted SF₆ is discarded and not reused to avoid degradation of insulation due to contamination and new SF₆ is used to fill the GIS. This policy is applied to other SF₆ insulated power equipment's when they are inspected, replaced, or discarded. As SF₆ is regulated globally, the current trend is toward developing and adopting alternative insulating materials. However, gas insulation with SF₆ is still being used locally and globally for now.

Due to its property to capture free electrons to form low mobility heavy ions, SF₆ makes the development of electron avalanches very difficult. Consequently, it has high breakdown voltage (three times higher than air), high thermal interruption capabilities (ten times higher than air), and high heat transfer capabilities (two times higher than air). Since early 1960's it has been successfully used as an insulating gas in power equipment such as high voltage and medium voltage switchgears, GIS, ring main, automatic circuit breaker, transformer, and cable. SF₆ is nontoxic, no potential acute or chronic ecotoxicity reported, and not hazardous to surface water and underground water due to its low solubility to water [1]-[7].

It is also not hazardous to ecosystem because it does not accumulate biologically and is not a carcinogen nor a mutagen. Table 1 shows the impurities and their cause of occurrence in SF_6 insulated power equipment [8]-[11].

Table 1. Origin of SF_6 impurities (IEC 60480)			
Source of impurities	Possible impurities		
Leakage, vacuum, desorption	Air, Oil, H ₂ O		
Partial discharge (corona, spark)	HF, SO ₂ , SOF ₂ , SOF ₄ , SO ₂ F ₂		
Corrosion due to	H2O, HE, SO2, SOF2, SO2F2, CuF2, WO2, CF4, AIF3		

switching arc	$11_{2}0, 111, 50_{2}, 501_{2}, 50_{2}1_{2}, 501_{2}, 10_{3}, 61_{4}, 111_{3}$
Corrosion of equipment	Metal dusts, Particles
Decomposition	Air, H ₂ O, HF, SO ₂ , SOF ₄ , SO ₂ F ₂ , SF ₄ , CF ₄ , Metal dusts, Particles, AlF ₃ , WO ₃ , CuF ₂

On the other hand, the global warming potential (GWP) of SF₆ is very high; 23,900 times higher than CO₂, and its life duration in air is 3,200 years making it environmentally very important to not release SF₆ into the air and reuse it. Therefore, during the processes of research, production, maintenance, and reclaim of SF₆, SF₆ should be released into the air conforming environmental regulations. Even though SF₆ is nontoxic, it should be maintained to minimize the release into the air and recovered and reused through separation and refinement when it is used in power equipment since it is one of the 6 major greenhouse gas and expensive. KEPCO defined SF₆ purity and impurity limits according to International Electrotechnical Commission (IEC) guideline. In Table 2 and Table 3, KEPCO's management standards are presented for new and used/recycled SF₆ respectively. In Table 3, the maximum acceptable moisture level is the same as that of IEC 60376, and the maximum acceptable SO₂ level is the same as the maximum acceptable HF level of IEC 60376 [8].

And also, Internationally, IEC 60376 specifies that SF_6 of 0.997 mole/mole or higher purity is suitable for switches and

Manuscript received May 11, 2017, revised June 2, 2017, accepted June 12, 2017

ISSN 2465-8111(Print), 2466-0124(Online), DOI http://dx.doi.org/10.18770/KEPCO.2017.03.01.041

This paper is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This paper is available online at http://journal.kepco.co.kr

Fig. 1. Valve configuration of GC-DID.

Fig. 2. Valve configuration of GC-MSD/TCD (MV: Main Valve, PPC: Programmable Pneumatic Control).

Fig. 3. Three valves installed at the back of GC-MSD/TCD.

suggests the maximum acceptable level of impurities such as air, CF_4 , H_2O , oil, and acidity in SF_6 , and their analysis method and precision [8][9].

Presently KEPCO is developing separation/refinement and decomposition technologies for used SF_6 in power equipment. Prior to this developments, SF_6 analysis system has been installed. This paper presents the analysis results of SF_6 samples before and after refinement using the analysis system.

II. EXPERIMENTAL

A. Samples

In KEPCO's power equipment such as 22.9 kV GIS, bus is filled with SF_6 gas from several liters to tens of liters and maintained on a regular basis. For GIS, switches, and bus, the life time is 22 years. When their lifetime expires, they are subject to replacement preferentially. And they are replaced according to

Table 2. Management standard for new SF ₆						
It	tem Maximum	Action				
Pı	urity ove	er 99.7%	D 1			
H	I ₂ O below	v 200 ppmv	Replace gas il level			
S	SO ₂ below	w 1 ppmv	exceeds			
	Table 3. Used and recycling SF_6 management standard					
	Item		Concentration			
	equipment where SF ₆	managing value	150 ppm			
ЦО	decompose	acceptable value	300 ppm			
1120	equipment where SF ₆	managing value	300 ppm			
	do not decompose	acceptable value	1,000 ppm			
	SO_2		below 1 ppm			
	Purity		over 99.7%			
Table 4. GC-DID analysis condition						
	Specification	Cone	dition			
Oven temperature		100~	100~110°C			
Detector temperature		80)°C			
Carrier gas, flow rate He			mL/min			
S	ample, flow rate	50 m	L/min			

the budget. Currently in Chungbuk headquarters is carrying out recovery, refinement, and reuse of used SF₆ from power equipment. SF₆ gas from power equipment such as 22.9 kV GIS'es and buses in KEPCO's local headquarters are recovered with SF₆ recovery equipment (SLR-600 Woosung Vacuum Co. Ltd.) and stored in gas cylinders to be transported to separation/refinement facility. The recovery equipment operates at 30 kg/cm², -20~40°C and comprised of a compressor, a vacuum pump, a storage tank, a cooler, a heater, and controllers. The SF₆ gas from the recovery equipment is pumped into cylinders at the pressure of 24~28 bar varying with the atmospheric temperature.

B. Analysis equipment

A portable analyzer (SF6-6100 pump back analyzer, Rapidox) is used on site. And precise analysis is performed with FT-IR (Fourier Transform-Infrared Spectrometer, MIDAC I1801, MIDAC Corp.), GC-DID (Gas Chromatograph-Discharge Ionization Detector, Novachrom 1000, AGC), GC-MSD (Gas Chromatograph-Mass Selective Detector, Clarus SQ 8T, Perkin-Elmer), GC-TCD (GC-Thermal Conductivity Detector, Clarus 680, Perkin-Elmer), and Moisture Analyzer (DF-745SGMAX, Servomex). The GC-DID uses two SilcoSteel packed columns (Molecular sieve 5A, Heyesep) as shown in Fig. 1. The first column (Col 1) identifies the main peak and impurity peaks. And then only impurities go into the second column (Col 2) and the rest is vented. The second column (Col 2) separates and analyzes the minute amount of impurities qualitatively and quantitatively. The analysis conditions are summarized in Table 4. The samples to be analyzed are mainly SF_6 gas with trace of impurities. To analyze the minute amount of impurities, back flush method - one of valve cut methods are adopted to analyze without the interference of SF₆ peak since SF₆ peak comes out last. Since molecular sieve column cannot separate CO₂ and Heyesep column cannot separate N_2 and O_2 , both are used to analyze H_2 , CH₄, CO, CO₂, CF₄, O₂, and N₂.

To analyze the purity of SF_6 and impurities without standard samples, TCD and MSD are used. TCD, which detects the thermal conductivity difference between sample and carrier gas, uses He which has high thermal conductivity as a carrier gas to analyze O₂ and N₂, which comprises most of the impurities [12]-[16]. The oven temperature is 60°C, and the sample is injected at

Table 5. GC-	-MSD/TCD analysis con	dition	
Spacification	Condit	tion	
Specification	MSD	TCD	
Oven temperature	200°C	60°C	
Carrier gas (He), flow	1 mL/min	1 mL/min	
Sample flow	1 mL/min	1 mL/min	
Table 6.	FT-IR analysis condition	n	
Specification Condition			
Scan time	0.8 sec.		
Resolution	1 cm ⁻¹		
Cell temperature	80 °C		
Table 7. Mois	ture analyzer analysis co	ndition	
Specification Condition			
Flow	500~600 mL/min		
Purge time	60	min	
Analytical time	30 min		

a flow rate of 1 mL/min. In general, purity of SF₆ in percent is estimated by subtracting the concentrations of impurities from 100. The estimation is cross checked by analyzing SF₆ concentration with TCD using standard samples of 85% (air balance) and 99.99% purity. As shown in Fig. 2, sample is injected into valve 1, and passes through 0.25 mL sampling loop and capillary column (Gas pro, 60 m) sequentially and is analyzed with TCD. Part of the sample is injected into channel 1 of valve 2, and passes through 1 mL sampling loop, the first packed column (Porapak Q), valve 3, and the second packed column (Molecular sieve 5A), and is analyzed with TCD. The actual 3 valves installed at the back of GC is shown in Fig. 3.

GC-MSD/TCD analysis condition is shown in Table 5. Since the sensitivity of GC-TCD is lower than GC-DID, it is used to the analysis of main components - SF₆, air, and N₂. GC-MSD is used to the analysis of chemicals whose standard samples are not exist or hard to find. And it is also used to qualitative and quantitative analysis of CF₆, C₂F₆, CO₂, SO₂, etc. whose concentration in SF₆ is over 20 ppm: not suitable for GC-DID analysis.

HF and SO₂, which are the major decomposition products of SF₆, and other decomposition products are analyzed with FT-IR and the analysis condition is shown in Table 6. FT-IR (Fourier Transform-Infrared spectroscopy) is a very valuable equipment for SF₆ impurity analysis, which can scan the whole spectrum range at a fast 0.8 scan/sec, identify more than 60 chemicals in 650~4,500 cm⁻¹ range, analyze HF and sulfur compounds [17]-[20]. For the SF₆ analysis system, the FT-IR's cell length is 10 m and filled with 1.9 L gas (@ 1 atm.; 25°C). The cell pressure during the analysis is about 1 bar. The detector is cooled with liquid nitrogen to enhance the analysis sensitivity. Since the detector detects the small heat caused by infrared absorption, it is better to have low background temperature to widen the heat sensing range. To minimize the effect of other chemicals the resolution is set to 1 cm⁻¹. ZnSe is used for beam splitter, which splits the infrared ray from the source and sends to fixed mirror and moving mirror. Before the sample analysis, the cell is purged with high purity (99.999%) N₂ to remove moisture and impurities. Then non existence of possible residual impurity peaks such as CO (2,300~2,350 cm⁻¹) and H₂O (4,0004,500 cm⁻¹, 1,400~2,000 cm⁻¹) is assured and the cell is cooled, background temperature is measured before the sample is injected.

To analyze the moisture in the range of several ppb to 20

Fig. 4. Cylinder inverter.

Fig. 5. Vaporizer.

ppm, diode laser adsorption spectroscopy type was selected. To analyze ppm level moisture, sufficient purging is required. After the moisture peak is stabilized, wait more than 30 minutes before taking the measurement to get correct value. The analysis condition is shown in Table 7.

C. Supplementary equipment

1) Cylinder Inverter

Since SF_6 is an easily liquefiable gas under pressure, it is partly liquefied in the sample cylinders at the pressure of about

Fig. 6. Chromatograms for standard samples. (a) GC-DID. (b) FT-IR. (c) GC-TCD.

20 bar. Therefore, both liquid and gas phase sample should be analyzed separately for precise qualitative and quantitative analysis. For this purpose, a siphon may be installed in the cylinder. However, we opted to fabricate a cylinder inverter to turn the cylinder upside down to sample liquid phase as shown in Fig. 4 to be used for various cylinders. The inverter has been designed with consideration for stability since SF₆ filled cylinder is quite heavy (about 100 kg including 50 kg of SF₆). Especially the ratchet located in the middle of the inverter should withstand 100 kg [12].

Table 8. Certificate of reference materials			
Components	Concentration	Uncertainty	
Components	(µmole/mole)	(µmole/mole)	
H_2	3.54	0.01	
O_2	3.53	0.03	
N_2	3.50	0.05	
CH_4	3.49	0.00	
CO	3.57	0.07	
CO_2	3.62	0.00	
CF_4	3.47	0.00	
He	Bal	ance	

2) Vaporizer

It is preferable to vaporize liquid SF_6 samples before they are injected into analysis equipment. In our analysis system, sampling lines from the sample cylinder to the analysis equipment are not long enough to vaporize liquid samples before they reach the sample inlets. Thus a vaporizer with a small heater, as shown in Fig. 5, is installed in the sampling line instead of heating the sampling line with a water bath. The heater temperature is set to $60^{\circ}C$.

D. Standard samples

A custom-made standard sample having similar composition to used SF₆ gas from power equipment was purchased from a local company (RIGAS, Korea). Two more SF₆ gas samples having 84.97% and 99.999% purity, HF sample (5.15 μ mol/mole, He balance) and SO₂ sample (5.00 μ mol/mole, He balance) were also purchased. Small amount of SO₂F₂ was provided in a Tedlar bag. The information of the standard sample is shown in Table 8.

III. RESULTS & DISCUSSION

A. Analysis result of low concentration SF6 standard sample

To obtain reliable analysis results, standard samples were analyzed before samples were analyzed. Fig. 6(a) shows the peaks of 7 chemicals of the standard sample from GC-DID analysis and they were clearly identifiable in 3~5 ppm range. The analysis result showed that the measurement errors of H₂, O₂, N₂, CH₄, CO, CF₄, CO₂ concentration were maximum 0.07 µmole/mole. It was speculated that large variation of retention time, which is typical characteristics of gas samples, was the cause of large error. Gas and liquid phase SF₆ samples before and after refinement were analyzed after the analysis of the standard sample. Fig. 6(b) is the analysis result of the standard sample with GC-TCD. A blank sample was measured with high purity He followed by measurement of standard SF₆ sample of 84.94% with 11.91% N2 and 3.15% O2. Then 99.99% SF6 standard sample was measured, and qualitative and quantitative analyses of samples were performed. Fig. 6(c) is the analysis result of 5 ppm HF, SO₂, and SO₂F₂ for quantitative analysis. Peaks of HF, SO₂, and SO₂F₂ were observed at 4,000~3,500 cm⁻¹, 1,500~1,000 cm⁻¹, and 1,500~100 cm⁻¹ respectively.

- B. Analysis results of gas and liquid phase SF6 samples before and after refinement
 - 1) Analysis result of gas phase sample before refinement

Analysis result of gas phase sample before refinement under the condition specified in 'II. Experimental' is shown in Table 9. Analysis procedure was set up such that analysis result is cross-

Table 9. A	Analysis	results of	gas and	liquid	phase sam	ple	before	refineme	nt
			0			r -			

Componente	Concentration (µn	Concentration (µmole/mole)		
Components	Gas phase	Liquid phase	Allalyzei	
H ₂	39.01	9.68	GC-DID	
O_2	4.07% (mole fraction)	0.39% (mole fraction)	GC-TCD	
N_2	16.20% (mole fraction)	1.65% (mole fraction)	GC-TCD	
CH_4	54.24	5.88	FT-IR	
СО	100.47	10.71	FT-IR	
CO_2	226.88	112.49	FT-IR	
CF_4	130.61	8.39	GC-DID	
C_2F_6	666.53	N.D (Detection limit < 0.1)	GC-MSD	
$C_{5}F_{10}$	N.D (Detection limit < 0.1)	N.D (Detection limit < 0.1)	FT-IR	
H_2O	13.47	7.00	Moisture Analyzer	
HF	0.71	N.D (Detection limit < 0.1)	FT-IR	
SO_2	2.97	N.D (Detection limit < 0.2)	FT-IR	
SOF_2	N.D (Detection limit < 0.1)	N.D (Detection limit < 0.1)	FT-IR	
SO_2F_2	N.D (Detection limit < 0.1)	N.D (Detection limit < 0.1)	FT-IR	
SOF_4	N.D (Detection limit < 0.1)	N.D (Detection limit < 0.1)	FT-IR	
SF ₆	79.60% (mole fraction)*	97.95% (mole fraction)*		

* Assay is by difference, after impurity content is determined.

rable 10. Analysis results of gas and riquid phase sample after refin

Components	Concentration	Concentration (µmole/mole)		
Components	Gas phase	Liquid phase	Anaryzei	
H_2	0.62	N.D (Detection limit < 0.1)	GC-DID	
O_2	23.25	10.05	GC-DID	
N_2	24.02	10.91	GC-DID	
CH_4	1.46	0.59	GC-DID	
CO	1.32	0.37	GC-DID	
$\rm CO_2$	1.31	1.24	GC-DID	
CF_4	10.06	6.35	GC-DID	
C_2F_6	N.D (Detection limit < 0.1)	N.D (Detection limit < 0.1)	GC-MSD	
$C_{5}F_{10}$	N.D (Detection limit < 0.1)	N.D (Detection limit < 0.1)	FT-IR	
H_2O	1.00	1.00	Moisture Analyzer	
HF	N.D (Detection limit < 0.1)	N.D (Detection limit < 0.1)	FT-IR	
SO_2	N.D (Detection limit < 0.2)	N.D (Detection limit < 0.2)	FT-IR	
SOF_2	N.D (Detection limit < 0.1)	N.D (Detection limit < 0.1)	FT-IR	
SO_2F_2	N.D (Detection limit < 0.1)	N.D (Detection limit < 0.1)	FT-IR	
SOF_4	N.D (Detection limit < 0.1)	N.D (Detection limit < 0.1)	FT-IR	
SF_6	99.99% (mole fraction)*	99.99% (mole fraction)*		

* Assay is by difference, after impurity content is determined.

checked with GC-DID and GC-TCD when impurity concentration was in the range of $100 \sim 1,000$ ppm. It is expected that gas phase sample before refinement would have considerable amount of impurities. With GC-DID only H₂ (Gain×1) was measured in analyzable range. Since SF₆ could be contaminated with air or N₂ during the power equipment operation or recovery process, O₂ and N₂ concentrations in SF₆ could be in % range so that GC-TCD was used to analyze them. C₂F₆, CF₄, and SO₂ were analyzed with GC-MSD even though they could be analyzed with FT-IR. Other impurities were analyzed with FT-IR. N₂ or air were measured at about 20%. HF was low at 0.71 ppm. Moisture was 13.47 ppm, which is below the reuse standard. The SF₆ purity was estimated to be 79.60%.

2) Analysis result of liquid phase sample before refinement

The analysis result of liquid phase sample before refinement is also shown in Table 9. O₂ and N₂ were analyzed with GC-TCD - same as gas phase sample. Most of impurities (H₂, CH₄, CO, CO₂, CF₄, Gain ×4) were able to be analyzed with GC-DID due to their low concentration. Moisture content was 7.00 ppm. Other impurities were undetectable with FT-IR and GC-MSD.

3) Analysis result of gas phase sample after refinement

It is expected that impurities in sample after refinement would be very low. Chemicals from H_2 to CF_4 in Table 10 could

be analyzed with GC-DID. Other impurities were undetectable and moisture content was 1 ppm.

4) Analysis result of liquid phase sample after refinement

The impurity concentration in liquid phase sample after refinement was expected to be much lower than 3 previous samples. Chemicals from H_2 to CF_4 in Table 10 were able to be analyzed with GC-DID - the same as the gas phase sample after refinement. Other impurities were undetectable and moisture content was 1 ppm.

The major impurity concentrations of above samples were compared in Fig. 7. Fig. 7(a) shows O_2 and N_2 which comprised most of impurities, and Fig. 7(b) shows the rest of impurities in ppmv. As discussed above, the impurity concentration was highest in the gas phase sample before refinement and there were almost no impurities in the gas and liquid phase samples after refinement.

IV. CONCLUSION

A comprehensive analysis system for SF_6 in power equipment was established. The following results were found through the analysis of 4 samples - gas and liquid phase samples before and after refinement - with analyzers in the system: GC-

Fig. 7. Comparison of impurity concentrations in ppmv.

DID, GC-MSD/TCD, FT-IR, and moisture analyzer.

- (1) Most of the impurities in samples before refinement were nitrogen and/or air.
- (2) Major impurities in liquid phase sample before refinement and gas/liquid phase samples after refinement could be analyzed with GC-DID at the same time in a short time.
- (3) HF, SO₂ and other sulfur compounds could be analyzed with FT-IR.
- (4) Since liquid phase samples have the same or lower impurity concentrations than gas samples, only gas sample analysis is needed to figure out the purity of SF₆ to reduce analysis time. Further analysis of liquid samples would be performed if required.
- (5) The analysis result confirmed that SF_6 after refinement can be reused since it meets the KEPCO management standard shown in Table 3.

Presently proper sampling method are being sought using gas sampling bag, gas sampling cylinder, Tedlar bag other than normal gas cylinder. And method of injecting samples to analyzers from this sampling device will be established. These current activities will be presented soon.

ACKNOWLEDGEMENT

This study has been proceeded as a self-funded internal

research project (No. R16VA06)) of the Korea Electric Power Corporation (KEPCO) in 2016. The research team deeply appreciate the help of GnL Co., Ltd. in GC-DID, GC-MSD/TCD analysis.

REFERENCES

- W.-T. Tsai, 'The decomposition products of sulfur hexafluoride (SF6): Reviews of environmental and health risk analysis', Journal of Fluorine Chemistry, Vol.128, 2007, pp.1345-1352.
- [2] C.T. Dervos, J.A. Mergos, M.D. Palaiologopoulou, "Environmental effects of electrically-stressed sulfur hexafluoride", EPJ Web of Conferences 33, 2012, 04004-pp.1-8. http://epj-conferences.org or http://dx.doi/10.1051/epjconf/ 20123304004.
- [3] M. Maiss, C.A.M. Brenninkmeijer, "Atmospheric SF₆: trends, sources, and prospects", Environmental Science Technology, Vol.32, 1988, pp.3077-3086.
- [4] C.T. Dervos, P. Vassiliou, "Sulfur hexafluoride (SF6): global environmental effects and toxic byproduct formation", Journal of Air & Waste Management Association, Vol.50, 2000, pp.137-141.
- [5] Q. Fu, Y. Wang, Z. Li, W. Yao, X. Zhuang, "Situation and analysis of sulfur hexafluoride (SF₆) byproducts of gas insulated switchgear", Asia-Pacific Power and Energy Engineering Conference, Guangdong, 2010, pp.1-4, DOI: 10.1109/APPEEC. 2010.5449364.
- [6] Y. Wang, L. Li, W. Yao, "Analysis and discussion of SF₆ byproducts in simulated electric equipment of overheating faults in low humidity", Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 2011, pp.1-3, DOI: 10.1109/APPEEC. 2011.574856.
- [7] C. Deligi, "On-line SF₆ monitoring-breaking paradigms", 2014 IEEE PES T&D Conference and Exposition, Chicago, USA, 2014, pp.1-4, DOI: 10.1109/TDC.2014.6863341.
- [8] International Electrotechnical Commission, IEC 60376, "Specification of technical grade sulfur hexafluoride (SF₆) for use in electrical equipment", Second edition, 2005.
- [9] International Electrotechnical Commission, IEC 60480, "Guidelines for the checking and treatment of sulfur hexafluoride (SF₆) taken from electrical equipment and specification for its reuse", Second edition, 2004.
- [10] International Electrotechnical Commission, IEC 62271-4, "High-voltage switchgear and controlgear-part 4: handling procedures for sulfur hexafluoride (SF6) and its mixtures, First edition, 2013.
- [11] L.G. Christophorou, J.K. Olthoff, D.S. Green (1997), "Gases for electrical insulation and arc interruption: possible, present and future alternatives to pure SF₆", NIST Technical Note 1425, November.
- [12] Standard test method for air and carbon tetrafluoride in sulfur hexafluoride by gas chromatograph, ASTM D2685-11 (2011). Standard test method for acidity of sulfur hexafluoride, ASTM D2284-11, (2011), Standard specification for sulfur hexafluoride, ASTM D2472-15 (2015), Standard test methods for water vapor content of electrical insulating gases by measurement of dew point, D2029-97 (2008).
- [13] B.L. Johannes, P. de C. Johannes, M.S. John, "Gas chromatographic analysis in tungsten hexafluoride", Journal of Chromatography. A. Vol.911, 2001, pp.107-112.
- [14] S. van der Laan, R.E.M. Neubert, H.A.J. Meijer, "A single gas chromatograph for accurate atmospheric mixing ration measurements of CO₂, CH₄, N₂O, SF₆ and CO", Atmospheric Measurement Techniques, Vol.2, 2009, pp.549-559.
- [15] R.L. Thompson, A.C. Manning, E. Gloor, U. Schultz, T. Seifert, F. Hänsel, A. Jordan, M. Heimann, "In-situ measurements of oxygen, carbon monoxide and greenhouse gases from Ochsenkopf tall tower in Germany", Atmospheric Measurement Techniques, Vol.2, 2009, pp.573-591.

- [16] E.C. Jong, P.V. Macek, I.E. Perara, K.D. Luxbacher, H.M. McNair, "An ultra-trace analysis technique for SF₆ using gas chromatography with negative ion chemical ionization mass spectrometry", Journal of Chromatography Science, Vol.53, 2015, pp.854-859. DOI: 10.1093/chromsci/bmu154.
- [17] H.M. Heise, R. Kurte, P. Fischer, D. Klockow, P.R. Janissek, "Gas analysis by infrared spectroscopy as a tool for electrical fault diagnostics in SF₆ insulated equipment", Fresenius Journal of Analytical Chemistry, Vol.358, 1997, pp.793-799.
- [18] X. Zhang, H. Liu, J. Ren, J. Li, X. Li, "Fourier transform infrared spectroscopy quantitative analysis of SF₆ partial discharge

decomposition components", Spectrochimica Acta Part A: Molecular and biomolecular spectroscopy, Vol.136, 2015, pp.884-889.

- [19] R. Kurte, H.M. Heise, D. Klockow, "Analysis of spark decomposition products of SF₆ using multivariate mid-infrared spectrum evaluation", Journal of Molecular Structure, Vol.480-481, 1999, pp.211-217.
- [20] R. Kurte, H.M. Heise, D. Klockow, "Quantitative infrared spectroscopic analysis of SF₆ decomposition products obtained by electrical partial discharges and sparks using PLS-calibration", Journal of Molecular Structure, Vol.565-566, 2001, pp.505-513.