DOI QR코드

DOI QR Code

Exhaust Plume Behavior Study of MMH-NTO Bipropellant Thruster

MMH-NTO 이원추진제 추력기의 배기가스 거동 해석 연구

  • Kim, Hyeonah (Department of Aerospace Engineering, Sejong University) ;
  • Lee, Kyun Ho (Department of Aerospace Engineering, Sejong University)
  • Received : 2016.08.29
  • Accepted : 2017.02.07
  • Published : 2017.04.01

Abstract

A spacecraft obtains a reaction momentum required for an orbit correction and an attitude control by exhausting a combustion gas through a small thruster in space. If the exhaust plume collides with spacecraft surfaces, it is very important to predict the exhaust plume behavior of the thruster when designing a satellite, because a generated disturbance force/torque, a heat load and a surface contamination can yield a life shortening and a reduction of the spacecraft function. The purpose of the present study is to ensure the core technology required for the spacecraft design by analyzing numerically the exhaust gas behavior of the 10 N class bipropellant thruster for an attitude control of the spacecraft. To do this, calculation results of chemical equilibrium reaction between a MMH for fuel and a NTO for oxidizer, and continuum region of the nozzle inside are implemented as inlet conditions of the DSMC method for the exhaust plume analysis. From these results, it is possible to predict a nonequilibrium expansion such as a species separation and a backflow in the vicinity of the bipropellant thruster nozzle.

우주비행체는 우주공간에서 소형 추력기를 통해 연소가스를 노즐 외부로 배출시킴으로써 궤도보정 및 자세제어에 필요한 반작용 모멘텀을 발생시킨다. 이때 배출된 배기가스가 우주비행체의 표면과 충돌하면서 발생된 교란 힘 및 교란토크, 열 부하, 표면 오염 등은 우주비행체의 수명 단축 및 기능저하를 유발시킬 수 있으므로 추력기 배기가스 거동에 관한 예측은 우주비행체 설계시 매우 중요한 절차라고 할 수 있다. 본 연구에서는 우주비행체의 자세제어용 추력기로 사용되는 10 N급 이원추진제 추력기의 배기가스 거동을 수치적으로 해석함으로써 우주비행체 설계에 필요한 핵심기술을 확보하는 것이 목적이다. 이를 위해 모노메틸하이드라진(MMH) 연료와 사산화이질소(NTO) 산화제의 화학평형반응과 추력기 노즐 내부 연속체 영역 계산을 수행한 후 배기가스 해석을 위한 직접모사법(DSMC)의 유입조건으로 적용하였다. 해석 결과, 이원추진제 추력기 노즐 부근에서 배기가스의 화학종 박리와 같은 비평형 팽창과 후방유동의 특성들을 예측할 수 있었다.

Keywords

References

  1. Jang, Y. H., and Lee, K. H., "A Development Trend Study of Bipropellant Rocket Engine for Orbit Transfer and Attitude Control of Satellite," KSPE Journal, Vol. 19, 2015, pp.50-60. https://doi.org/10.6108/KSPE.2015.19.1.050
  2. Li, Y., and Li, X., "Analyses and Simulations of Exhaust Plume Effects on Satellite Appendages," The International Conference on Computer Science & Education, Vol. 5, 2010, pp.184-188.
  3. Sutton, G. P., and Biblarz, O., "Rocket Propulsion Elements," John Wiley & Sons Inc., 8th ed, 2010.
  4. Lee, K. H., and Lee, S. N., "Study on Small Thruster Plume Using Preconditioned Continuum Scheme and DSMC Method in Vaccum Area," KSAS Journal, Vol. 37, No. 9, 2009, pp.906-915.
  5. Theroude, C., Scremin, G., and Wartelski, M., "Astium Approach for Plume Flow and Impingement of 10 N Bipropellant Thruster," Proceedings of the 7th European Symposium on Aerothermodynamics, 2011, pp.141.
  6. Woronowicz, M., "Development of a Novel Free Molecule Rocket Plume Model," AIP conference, 2001.
  7. Stewart, B. D., and Lumpkin III, F. E., " Axisymmetric Plume Simulations with NASA's DSMC Analysis Code," 33rd Exhaust Plume and Signatures (EPSS), 2012.
  8. Park, J. H., Kang, S. J., Kim, J. S., Baek, S. W., and Yu, M. J., "DSMC Analysis of Satellite Thruster Plume," KSAS Journal, Vol. 29, No. 8, 2001, pp.111-118.
  9. Kim, J. G., Kwon, O. J., Lee, K. H., Kim, S. K., and Yu, M. J., "Detailed Analysis of Thrust Plume and Satellite Base Region Interaction," KSAS Journal, Vol. 36, No. 11, 2008, pp.1056-1062.
  10. Lee, K. H., and Choi, S. W., "Interaction Effect Analysis of Thruster Plume on LEO Satellite Surface Using Parallel DSMC Method," Computers & Fluids Journal, Vol. 80, 2013, pp. 333-341. https://doi.org/10.1016/j.compfluid.2012.01.024
  11. Airbus Defence & Space, "Bipropellant Thruster," World Wide Web location http://csastrium.eads.net/sp/, 2014.
  12. Jang, Y. H., and Lee, K. H., "Numerical Study of Chemical Reaction for Liquid Rocket Propellant Using Equilibrium Constant," KSAS Journal, Vol. 44, No. 4, 2016, pp.333-342.
  13. BIRD, G. A., "Molecular Gas Dynamics and The Direct Simulation of Gas Flows," Oxford University Press Inc., 1994.