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Abstract

In this work, the nutation control of rigid spacecraft with only two momentum wheels is addressed by applying the feedback 

linearization technique. In this strategy, the primary performance index is to regulate the nutational angle by the momentum 

control of wheels. The spacecraft attitude equations of motion are transformed to a general linearized form by feedback 

linearization technique, including a guaranteed control law promising the internal dynamics stability to accomplish the 

nutation angle small. It is proven that the configuration of inertia properties plays a key role in analyzing spacecraft energy 

level. The behavior of the momentum wheels is also studied analytically and numerically. Finally, the effectiveness of the 

proposed nonlinear control law for the momentum transfer is verified by conducting numerical simulations.
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1. Introduction

At least three actuators, either gas jets or momentum 

wheels, are required necessarily for the 3-axis attitude control 

of spacecraft so that arbitrary reorientation maneuvers can 

be accomplished using smooth feedback[1]−[6]. On the other 

hand, it is also well proven that with less than three momentum 

wheel actuators the system becomes uncontrollable[7]. As 

a result, arbitrary reorientation maneuvers are analytically 

impossible using only two momentum wheel actuators. 

Nevertheless, the attitude stabilization problem using only 

two momentum wheel actuators have been performed by 

several researchers since the wheels can fail to operate in 

space like FUSE and Hayabusa examples[7−9]. Krishnan 

et al. derived a discontinuous feedback control law that 

stabilized the spacecraft about any equilibrium attitude[8]. 

In this strategy, a series of eight maneuvers is required 

to accomplish the three axis attitude reorientation. Also, 

Krishnan et al. considered stabilizing an under-actuated rigid 

spacecraft using two momentum wheels with the assumption 

that the initial velocity vector lies in the same plane as the 

two momentum wheels[9]. Tsiotras and Longuski have 

considered stabilizing an axially symmetric spacecraft using 

only two external pairs of gas jets[10]. However, the initial 

velocity is restricted to the control input plane. The problem 

of finding suboptimal spacecraft maneuver control laws 

for handling under-actuated system, with only two control 

torques available was addressed by Kim et al.[11,12]. One of 

the drawbacks of this technique is that a series maneuvers 

based on Euler angle is required.

An adaptive control based on feedback linearization 

technique with neural networks was addressed for the 

momentum transfer control of a torque-free gyrostat with an 

attached spring-mass-dashpot damper. With very restricted 

resources, it was proven that the stability of the control law 

by using the Lyapunov stability criterion[13]. Nevertheless, 

the problem in this research is that it has very undesirable 

control torque profiles for the nutation angle regulation. In 

this paper, it is focused on that the attitude control problem 

from arbitrary reorientation maneuver to the initial attitude 
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acquisition maneuver by momentum transfer control with 

only two wheels, guaranteeing implementable control torque 

profiles. The nonlinear feedback linearization technique 

is applied for the primary attitude control of spacecraft, so 

that the equations of motion of spacecraft installed with two 

wheels are easily transformed to a general linearized form 

including internal dynamics with a stability condition by 

Lyapunov function candidate. In this work, the role of the 

secondary wheel is analyzed deeply how well contribute 

on the performance of the attitude control. Furthermore, 

misalignment of the momentum wheels is considered as 

well. 

This paper is organized as follows. First, the dynamic 

equations of motion of spacecraft model installed with two 

wheels resulting in equations in terms of angular velocity 

and momentum are formulated. From the generalized 

equations of motion with the restriction that two wheels 

are located in the same plane, it is simplified by placing two 

wheels on each spacecraft principal axis. Next, a control law 

using feedback linearization technique is presented and 

the stability of the control law is proven by using Lyapunov 

stability theorem. Finally, simulation results are presented to 

verify the effectiveness of the proposed control law.

2. Equations of Motion

Consider a rigid spacecraft installed with two momentum 

wheel actuators as shown in Fig. 1. The system consists of a 

rigid body Bs, containing rigid two axisymmetric wheels R1 

and R2 spinning about the axes defined by the unit vectors   

and 
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transformed to a general linearized form including internal dynamics with a stability condition by 

Lyapunov function candidate. In this work, the role of the secondary wheel is analyzed deeply how 
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formulated. From the generalized equations of motion with the restriction that two wheels are located 
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control law using feedback linearization technique is presented and the stability of the control law is 

proven by using Lyapunov stability theorem. Finally, simulation results are presented to verify the 

effectiveness of the proposed control law. 
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By assuming that the product of inertia of the spacecraft is zero, we denote the system inertia 
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1wh  and 
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is the inertia tensor of each wheel. 
iw , 1 , 

iwJ  and 
it

J  are the relative angular velocity of each 

wheel about its spin axis 1â , unit matrix, axial and transverse moments of inertia of each 

axisymmetric momentum wheel, respectively. Therefore, the total angular momentum is the sum of 
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1 21 2ˆ ˆw wh h  h J a a    (4) 

where 

1 2
 b w w  J J J J  

Fig. 1. A rigid spacecraft using two momentum wheel actuators
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ii i wI I J i   , i i  is the angular rate of spacecraft, iu  denotes the applied control 

input, and wh  and wJ  represent the angular momentum and the moment of inertia of the 

momentum wheels, respectively. The total kinetic energy of the spacecraft is written as 
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The time derivative of the total kinetic energy is given in the form 

1 21 2E u u       (11) 

Note that the total energy is changed by nonzero torque input independent of inertia properties and 

spacecraft angular velocity components[14]. The time derivative of the total kinetic energy is related 

to the torque input and angular speed of each wheel.  

As a criterion for the momentum transfer of spacecraft, let us consider the nutation angle of the 

spacecraft defined as[15] 
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where | |h  denotes the magnitude of the total angular momentum of spacecraft. Note that | |h  is 

constant by momentum conservation principle. Therefore, the nutation angle decreases from 90 deg, 

with the initial spin of the spacecraft about 2b  or 3b -axis to a small value.  
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The time derivative of the total kinetic energy is given in the form 
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Note that the total energy is changed by nonzero torque input independent of inertia properties and 

spacecraft angular velocity components[14]. The time derivative of the total kinetic energy is related 
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where | |h  denotes the magnitude of the total angular momentum of spacecraft. Note that | |h  is 

constant by momentum conservation principle. Therefore, the nutation angle decreases from 90 deg, 

with the initial spin of the spacecraft about 2b  or 3b -axis to a small value.  
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Therefore, the numerator of the nutation angle, namely, the angular momentum about 1b -axis can 

be written as 
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3.2 Control Law Design by Feedback Linearization

The feedback linearization technique is used for the 

momentum transfer control of a rigid spacecraft with 

two momentum wheel actuators. Candidate output and 

reference functions for feedback linearization based on 

initial stability analysis are chosen as
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Hence, the partial differential equation can be solved by separating variables to obtain 

1 21 1 2 2( ) w wI h I h     x    (21) 

which satisfies (0) 0  . The internal dynamics is equivalent to the sum of output functions 1y  

and 2y  for the feedback linearization. Now, the equations of motion of the spacecraft are 6 easily 

(19)
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explicitly contain control input to determine the relative 

degree are as follows
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 for 

x≠0. The Lyapunov equation guarantees a unique positive 

definite solution. Based on the Eq. (21), the internal 

dynamics is not globally asymptotically stable. However, 

since the Lyapunov stability condition of Eq. (24) guarantees 

that output functions track reference trajectories eventually, 

the internal dynamics is stable.

With the restriction that the misalignment angles of α and 

β are small from orthogonal configuration, output functions 

for feedback linearization in Eq. (18) can be modified as
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It is motivated by the idea that the momenta of two 

wheels about b̂1 and b̂2-axes depend on the alignment angles 

α and β. The rotor misalignment causes desired nominal 

spin to 7 deviate from a pure b̂1-axis spin, since the angular 

momentum about b̂2-axis is produced by alignment angle 

α. However, the added wheel aligned with b̂2-axis can 

remove this term, even though the added wheel also has a 

misalignment angle about b̂2-axis.

4. Stability Analysis

In this section, the stability analysis is conducted. A 

perturbed linear form of the nominal motion is established 

by defining variables as follows:
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where ph  denotes the nominal angular momentum of the wheel, and p  is the constant which can 

be considered as the orbital rate or mean motion for a circular orbit in most practical cases. This 

allows continuous earth-pointing strategy of the platform. 

Next, the perturbed equations of motion are simplified into 
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divergent solutions for ω2 and ω3 as shown in Table 1. It is 

noted from the solution 1 that the addition of a spinning 

rotor within the spacecraft could contain enough angular 

momentum to stabilize a spacecraft’s spin axis, even for 
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section. The closed loop stability analysis guarantees the 

asymptotic stability by feedback linearization technique, 

but there is no relationship between stability conditions 

and spacecraft dynamics. On the contrary, based on Table 

1, the above stability conditions contain moment of inertia 

properties and angular momentum of the spacecraft

5. Simulation

Several numerical simulations are conducted to verify 

the performance of proposed control law. Time constants 

τ1 and τ2 determining reference trajectory shapes are set 

to 800 and 1200, respectively. A feedback gain matrix K 

is designed as α0=0.1, α1=0.001, β0=0.1, β1=0.001, to assign 

the eigenvalues of Ac-BcK at a desired stable location. 

To prevent unusually excessive control commands, the 

torque outputs from the control laws are limited such that 

-N1≤u1(t),u2(t)≤N1, where the maximum torque output N1 

is set to 0.005 Nm. Moreover, to prevent unusually excessive 

wheel speed, the wheel speed is implemented with a limiter 

such that -N2≤Ω1(t),Ω2(t)≤N2, where the maximum wheel 
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Fig 2. Simulation results( 2 3 10 , 90deg deg and I I I     ) Fig. 2. Simulation results(α=2deg, β=88deg and I2>I3>I1)
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speed N2 is set to 5000 rpm for each wheel as well. In other 

words, the maximum angular momentum of each wheel is 

limited to 26 Nms. The spacecraft initially spins about b̂2

-axis with a spin rate of 0.1771 rad/sec. Let us suppose that 

the spacecraft inertia property is crucial for the Successful 

momentum transfer maneuver. The initial spin axis b̂2 of 

the spacecraft is chosen as the maximum or minimum 

moment of inertia axis. Nevertheless, the proposed control 

law produces a proper tracking control torque command 

to execute successful momentum transfer maneuver. The 

performance index is the final nutation angle that needs to 

be made small enough.

A numerical simulation is performed by using the 

proposed control law in Eq. (23). The moment of inertia for 

the spacecraft with two momentum wheels are selected as 

[I1, I2, I3]=[85.12, 113.59, 86.24]kgm2 and [Iw1
, $, Iw2

]=[0.05, 

0.05]kgm2, respectively. Note that the initial spin axis b̂2 

of the spacecraft is chosen as the maximum moment of 

inertia axis, whereas one wheel from two installed in the 

b̂1-axis for the nominal spin is aligned along the minimum 

moment of inertia axis in opposition to that of the platform. 

The simulation results are displayed in Figs. 2-3. The 

control input u1(t) regardless of u2(t) has the positive 

value in the initial state, and they gradually converge to 

zero after appropriate torque profile generation by the 

nonlinear feedback linearization technique. Therefore, the 

nominal spin axis b̂1 seems to absorb the initial angular 

momentum of the spacecraft effectively. In other words, 

output functions track reference trajectories with a small 

error bound. As a result, the final nutation angle converges 

to a very small value of 0.6 deg over the maneuver time with 

the negligible residual oscillation. The total kinetic energy 

decreases from the initial maximum value 220 J since the 

wheel angular momentum is smaller than 1 Nms based 

on Eq. (10). Even though the simulation result satisfies the 

open loop stability conditions in condition 2 of Table 1, it 

does not meet the stability requirement of characteristic 

equation in Eq. (29). It means that the spacecraft is likely 

to be unstable about the small disturbance torque or force 

at the steady-state in Fig. 2 without continuous active 

14 

 
Fig 3. Simulation results( 2 3 10 , 90deg deg and I I I     ) 

Fig. 3. Simulation results(α=2deg, β=88deg and I2>I3>I1)
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Fig 4. Simulation results( 1 230 , 90deg deg and I I I     )

Fig. 4. Simulation results(α=2deg, β=88deg and I1>I3>I2) 
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control. Moreover, two wheels are still not saturated to the 

maximum speed. (see Fig. 3).

Next, the suggested control strategy is utilized once again 

for the case of the unstable moment of inertia configuration, 

namely, the initial spin axis b̂2 of the spacecraft is chosen as 

the minimum moment of inertia axis, whereas one wheel 

from two installed in the b̂1-axis for the nominal spin is 

aligned along the maximum moment of inertia axis in 

opposition to that of the platform. Therefore, the moment 

of inertia data for the spacecraft model are chosen as [I1, 

I2, I3]=[113.59, 85.12, 86.24]kgm2. The simulation results 

are shown in Figs. 4-5. The control input u1(t) regardless 

of u2(t) has negative value in the initial state in opposition 

to the first simulation result, and they also gradually 

converge to zero after appropriate torque profile generation 

by feedback linearization. Therefore, the nominal spin 

axis b̂1 seems to absorb initial angular momentum of 

the spacecraft effectively. As a result, the final nutation 

angle converges to a very small value, 0.6 deg, over the 

maneuver time with negligible residual oscillation. The 

wheel angular momentum hw1
(t) becomes finally negative 

value larger than 1 Nms to satisfy the constant total angular 

momentum requirement. Therefore, the total kinetic energy 

level maintains the first maximum value 225 J through the 

simulation time in opposition to the first simulation result. 

Even though the simulation result satisfies the open loop 

stability conditions in condition 1 of Table 1, it does not 

meet the stability requirement of characteristic equation 

in Eq. (29). It is also noted that the spacecraft is likely to be 

unstable about the small disturbance torque or force at the 

steady-state in Fig. 4 without continuous active control.

Finally, Figs. 6-7 present the simulation results under the 

existence of rotor misalignment in both wheels, namely, the 

alignment angles of two wheels are α=2deg and β=88deg, 

respectively. The proposed control strategy produces two 

proper tracking control torque commands u1(t) and u2(t) 

to execute a successful momentum transfer maneuver. As 

a result, the final nutation angle error converges to a very 

small value, 0.6 deg, over the maneuver time. Furthermore, 

it is also guaranteed by conducting many simulations with 
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Fig 5. Simulation results( 1 230 , 90deg deg and I I I     ) 

 
Fig. 5. Simulation results(α=2deg, β=88deg and I1>I3>I2) 
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Fig 6. Simulation results( 2 132 , 88deg deg and I I I     ) Fig. 6. Simulation results(α=2deg, β=88deg and I2>I3>I1)
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various small misalignment initial errors that the nutation 

angle error is converged to a small error bound.

6. Conclusions

In this paper, the momentum transfer control for the 

nutation angle regulation was proposed for the spacecraft 

with two momentum wheels. The feedback linearization 

technique was used for the two wheels to make orthogonal 

to the principal axes and then the asymptotic stability of 

the system was proven .The proposed control law was able 

to make the nutation angle be in a very small bound. In this 

paper, it is noted that the added wheel does not contribute to 

the initial attitude acquisition maneuver once it is installed in 

the initial spin axis. However, it is proven that the added wheel 

overcomes the rotor misalignment problem effectively by the 

proposed control law. Note that most of the shapes in the class 

of cube satellites are standardized so that the off-diagonal 

term of MOI is almost zero. Consequently, the suggested 

control system which is based on the critical assumptions can 

be applicable to the generic cube satellites directly without 

much concern about the limited design conditions.
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