DOI QR코드

DOI QR Code

9.4T MRI FLASH Sequence에서 마우스의 뇌 조영증강 검사를 위한 적정 Echo phase

Optimal Echo phase of FLASH sequence for Brain Enhancement scan of mouse at 9.4T MRI system

  • 정현근 (고려대학교대학원 의용과학) ;
  • 김민기 (고려대학교 전자정보공학과) ;
  • 남기창 (동국대학교 의과대학 의공학교실) ;
  • 정현도 (템플턴대학교 범죄심리학) ;
  • 안치권 (경희제생한의원) ;
  • 김호철 (을지대학교 방사선학과)
  • Jeong, Hyunkeun (Bio-Medical Science, Korea University Graduate School) ;
  • Kim, Mingi (Electronics&Information Engineering, Korea University) ;
  • Nam, Kichang (Department of Medical Engineering, Dongguk University College of Medicine) ;
  • Jung, Hyundo (Criminal Psychology, Templeton University) ;
  • Ahn, Chigwon (Department of Treatment, KH-JS Oriental Medicine Clinic) ;
  • Kim, Hochul (Department of Radiological Science, Eulji University)
  • 투고 : 2017.03.21
  • 심사 : 2017.06.13
  • 발행 : 2017.07.25

초록

본 연구에서는 9.4T MRI의 FLASH 시퀀스를 이용하여 마우스의 뇌 조영증강 검사 시 적정한 echo phase를 알아보고자 하였다. 이에 따른 정량화를 위하여 가도테리돌로 제작된 MR팬텀 실험을 진행하였다, 서로 다른 몰 농도의 가돌리늄으로 구성된 각 세 개의 팬텀을 제작하여 마우스 뇌 검사에 사용하고 있는 FLASH 시퀀스의 echo phase에 변화를 주어 시행한 후, 이에 대한 분석을 진행하였다. 팬텀실험결과 SSI(Saline's Signal Intensity)는 $6{\pi}$부터 $28{\pi}$까지 33개 각각의 phase에서 25~27[a.u]를 보였고, RSP(Response Start Point)는 각각 30~100 mmol을 기록하였다. MPSI(Max Peak Signal Intensity)는 47~52 [a.u]를 보였고, MPP(Max Peak Point)는 0.8~9 mmol로 기록되었다. EPMS(Enhancement Percentage of MSI to SSI)는 80.8~108.0%로 기록되었고, ASIMP(Average of SI according to Mol concentration on each Phase)은 21.1~31.8 [a.u] 사이에서 형성되었다. 마지막으로 ORA(Occurence Rate of Artifact)는 아티팩트 발생유무에 따라 +1과 -1로 표기하였다. 본 연구를 통하여 9.4T MRI에서의 FLASH 시퀀스의 조영증강 정도를 정량화 할 수 있었고, 마우스의 뇌 조영증강 검사 시 적정 echo phase를 산출 할 수 있었다.

The objective of study was to investigate the optimal echo phase for mouse brain enhancement scan using fast low angle shot (FLASH) sequence of 9.4T magnetic resonance imaging (MRI). For quantification based on this method, an MR phantom experiment and clinical research were done. The phantom experiment was conducted by fabricating three phantoms with different molar concentration of gadolinium to create changes in echo phase of 9.4T FLASH sequence used in mouse brain scans. In the phantom experiment, SSI was 25~27 [arbitrary units, a.u.] in each of 33 phases from $6{\pi}$ to $28{\pi}$, while RSP was 30~100 mmol. MPSI was 47~52 [a.u], while MPP, where MPSI is seen, was 0.8~9 mmol. EPMS was 80.8~108.0%, while ASIMP was formed between 21.1 and 31.8 [a.u]. In the clinical research, Finally, the occurrence rate of artifact that expressed -1 nd +1. The present study was able to quantify the degree of enhancement at FLASH sequence of 9.4T MRI, as well as identify the optimal echo phase during mouse brain enhancement scan.

키워드

참고문헌

  1. HK. Jeong, H. Jung, and H. Kim, "Quantitative Analysis of GBCA Reaction by Mol Concentration Change on MRI Sequence", The Institute of Electronics and Information Engineers, vol. 52, No. 2, pp. 182-192, Feb, 2015. https://doi.org/10.5573/ieie.2015.52.2.182
  2. HK. Jeong, H. Jung, K. Nam and H. Kim, "Gadoteridol's Signal Change according to TR, TE Parameters in T1 Image", The Institute of Electronics and Information Engineers, vol. 52, No. 9, pp. 117-124, Sep, 2015.
  3. HK. Jeong, H. Jung, K. Nam, G. Jang and H. Kim, "Comparative Analysis of Quantitative Signal Intensity between 1.0 mol and 0.5 mol MR Contrast Agent", The Institute of Electronics and Information Engineers, vol. 52, No. 12, pp. 134-141, Dec, 2015. https://doi.org/10.5573/ieie.2015.52.12.134
  4. HK. Jeong, M. Kim, J. Song, K. Nam, H. Choi, H. Jung, and H. Kim, "Optimization of Flip Angle at Head&Neck MR Angiography using Gadoteridol", The Institute of Electronics and Information Engineers, vol. 53, No. 3, pp. 463-469, March, 2016.
  5. HK. Jeong, SH. Kim, CH. Song, SH. Lee, M. Kim, Y. Lee, and H. Kim, "Signal Change of iodinated contrast agents in MR imaging", The Institute of Electronics and Information Engineers, vol. 53, No. 12, Dec, 2016.
  6. E. Hagberg, and K. Scheffler, "Effect of r(1) and r(2) relaxivity of gadolinium-based contrast agents on the T(1)-weighted MR signal at increasing magnetic field strengths", Contrast Media MolI maging vol. 8, no. 6, pp. 456-65, Nov-Dec, 2013. https://doi.org/10.1002/cmmi.1565
  7. Z. Seidl, J. Vymazal, M. Mechl, M. Goyal, M. Herman, C. Colosimo, M. Pasowicz, R. Yeung, B. Paraniak-Gieszczyk, B. Yemen, N. Anzalone, A. Citterio, G. Schneider, S. Bastianello, and J. Ruscalleda, "Does higher gadolinium concentration play a role in the morphologic assessment of brain tumors? Results of a multi center in train dividual crossover comparison of gadobutrol versus gadobenate dimeglumine (the MERIT Study)", AJNRAmJNeuroradiol, vol. 33, no. 6, pp. 1050-8, Jun, 2012. https://doi.org/10.3174/ajnr.A3033
  8. H. S. Thomsen, T. Almen, and S. K. Morcos, "Gadolinium-containing contrast media for radio graphic examinations: a position paper," Europeanradiology, vol. 12, no. 10, pp. 2600-2605, 2002.
  9. H. S. Thomsen, S. K. Morcos, T. Almen, M. F. Bellin, M. Bertolotto, G. Bongartz, O. Clement, P. Leander, G. Heinz-Peer, P. Reimer, F. Stacul, A. van der Molen, J. A. Webb, and E. C. M. S. Committee, "Nephrogenic systemic fibrosis and gadolinium -based contrast media: updated ESUR Contrast Medium Safety Committee guidelines", EurRadiol, vol. 23, no. 2, pp. 307-18, Feb, 2013.
  10. C. Chapon, A. H. Herlihy, and K. K. Bhakoo, "Assessment of myocardial infarction in mice by late gadolinium enhancement MR imaging using an inversion recovery pulse sequence at 9.4T," JCardiovascMagnReson, vol. 10, pp. 6, Jan 24, 2008.
  11. P. L. de Sousa, J. B. Livramento, L. Helm, A. E. Merbach, W. Meme, B. T. Doan, J. C. Beloeil, M. I. Prata, A. C. Santos, C. F. Geraldes, and E. Toth, "In vivo MRI assessment of a novel GdIII-based contrast agent designed for high magnetic field applications," Contrast Media MolI maging, vol. 3, no. 2, pp. 78-85, Mar-Apr, 2008. https://doi.org/10.1002/cmmi.233
  12. Pieter A, Doevendans, Mat J, Daemen, Dbo D, de Muinck, and J. F. Smits, "Cardiovascular phenotyping in mice" Cardiovascular Research vol. 39, pp. 34-49, 1998. https://doi.org/10.1016/S0008-6363(98)00073-X
  13. Bloembergen N, Purcell EM, Pound RV "Relaxation effects in nuclear magnetic resonance absorption", Phys Rev vol. 73, pp. 679, 1948. https://doi.org/10.1103/PhysRev.73.679
  14. Bloembergen N, "Proton relaxation times in paramagnetic solution", J Chem Phys vol. 27, pp. 572, 1957. https://doi.org/10.1063/1.1743771