DOI QR코드

DOI QR Code

(K,Na)NbO3-based Lead-free Piezoelectric Materials: An Encounter with Scanning Probe Microscopy

  • Zhang, Mao-Hua (State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University) ;
  • Thong, Hao Cheng (State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University) ;
  • Lu, Yi Xue (State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University) ;
  • Sun, Wei (State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University) ;
  • Li, Jing-Feng (State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University) ;
  • Wang, Ke (State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University)
  • Received : 2017.06.15
  • Accepted : 2017.07.08
  • Published : 2017.07.31

Abstract

Environment-friendly $(K,Na)NbO_3-based$ (KNN) lead-free piezoelectric materials have been studied extensively in the past decade. Significant progress has been made in this field, manifesting competitive piezoelectric performance with that of lead-based, for specific application scenarios. Further understanding of the relationship between high piezoelectricity and microstructure or more precisely, ferroelectric domain structure, domain wall pinning effect, domain wall conduction and local polarization switching underpins the continuous advancement of piezoelectric properties, with the help of piezoresponse force microscopy (PFM). In this review, we will present the fundamentals of scanning probe microscopy (SPM) and its cardinal derivative in piezoelectric and ferroelectric world, PFM. Some representative operational modes and a variety of recent applications in KNN-based piezoelectric materials are presented. We expect that PFM and its combination with some newly developed technology will continue to provide great insight into piezoelectric materials and structures, and will play a valuable role in promoting the performance to a new level.

Keywords

References

  1. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics; pp. 185-212, Academic Press, London, 1971.
  2. J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, "Transferring Lead-Free Piezoelectric Ceramics into Application," J. Eur. Ceram. Soc., 35 [6] 1659-81 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
  3. J. Rodel, W. Jo, K. T. P. Seifert, E.-M. Anton, T. Granzow, and D. Damjanovic, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153-77 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  4. C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J. S. Son, C. W. Ahn, and W. Jo, "Lead-Free Piezoceramics-Where to Move on?," J. Materiomics, 2 [1] 1-24 (2016). https://doi.org/10.1016/j.jmat.2015.12.002
  5. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rodel, "Giant Electric-Field-Induced Strains in Lead-free Ceramics for Actuator Applications-Status and Perspective," J. Electroceram., 29 [1] 71-93 (2012). https://doi.org/10.1007/s10832-012-9742-3
  6. J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, and F.-Z. Yao, "(K,Na)$NbO_3$-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges," J. Am. Ceram. Soc., 96 [12] 3677-96 (2013). https://doi.org/10.1111/jace.12715
  7. K. Wang and J.-F. Li, "(K,Na)$NbO_3$-Based Lead-Free Piezoceramics: Phase Transition, Sintering and Property Enhancement," J. Adv. Ceram., 1 [1] 24-37 (2012). https://doi.org/10.1007/s40145-012-0003-3
  8. J. Wu, D. Xiao, and J. Zhu, "Potassium-Sodium Niobate Lead-Free Piezoelectric Materials: Past, Present, and Future of Phase Boundaries," Chem. Rev., 115 [7] 2559-95 (2015). https://doi.org/10.1021/cr5006809
  9. J. Wu, D. Xiao, and J. Zhu, "Potassium-Sodium Niobate Lead-Free Piezoelectric Ceramics: Recent Advances and Perspectives," J. Mater. Sci.: Mater. Electron., 26 [12] 9297-308 (2015). https://doi.org/10.1007/s10854-015-3084-2
  10. S. Hong and Y. Kim, "Ferroelectric Probe Storage Devices," pp. 259-73 in Emerging Non-volatile Memories, Springer, New York, 2014.
  11. M. Kim, S. H. Kim, and S. Hong, "Materials and Devices for MEMS Piezoelectric Energy Harvesting," pp. 417-35 in Advances in Energy Harvesting Methods, Springer, New York, 2013.
  12. S. Hong, S. M. Nakhmanson, and D. D. Fong, "Screening Mechanisms at Polar Oxide Heterointerfaces," Rep. Prog. Phys., 79 [7] 076501 (2016). https://doi.org/10.1088/0034-4885/79/7/076501
  13. P. B. Groszewicz, H. Breitzke, W. Jo, J. Rodel, and G. Buntkowsky, "Local Structure of the B-site in BNT-xBT Investigated by $^{47,49}Ti$ NMR: Effect of Barium Content," J. Appl. Phys., 121 [11] 114104 (2017). https://doi.org/10.1063/1.4978017
  14. M. Acosta, J. Zang, W. Jo, and J. Rodel, "High-Temperature Dielectrics in $CaZrO_3$-Modified $Bi_{1/2}Na_{1/2}TiO_3$-Based Lead-Free Ceramics," J. Eur. Ceram. Soc., 32 [16] 4327-34 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.06.011
  15. N. H. Khansur, M. Hinterstein, Z. Wang, C. Groh, W. Jo, and J. E. Daniels, "Electric-Field-Induced Strain Contributions in Morphotropic Phase Boundary Composition of $(Bi_{1/2}Na_{1/2})TiO_3-BaTiO_3$ during Poling," Appl. Phys. Lett., 107 [24] 242902 (2015). https://doi.org/10.1063/1.4937470
  16. R. Dittmer, W. Jo, J. Rodel, S. Kalinin, and N. Balke, "Nanoscale Insight into Lead-Free BNT-BT-xKNN," Adv. Funct. Mater., 22 [20] 4208-15 (2012). https://doi.org/10.1002/adfm.201200592
  17. J. Zhang, Z. Pan, F. F. Guo, W. C. Liu, H. Ning, Y. B. Chen, M. H. Lu, B. Yang, J. Chen, S. T. Zhang, X. Xing, J. Rodel, W. Cao, and Y. F. Chen, "Semiconductor/Relaxor 0-3 Type Composites without Thermal Depolarization in $Bi_{0.5}Na_{0.5}TiO_3$-Based Lead-Free Piezoceramics," Nat. Comm., 6 6615 (2015). https://doi.org/10.1038/ncomms7615
  18. C. Groh, D. J. Franzbach, W. Jo, K. G. Webber, J. Kling, L. A. Schmitt, H.-J. Kleebe, S.-J. Jeong, J.-S. Lee, and J. Rodel, "Relaxor/Ferroelectric Composites: A Solution in the Quest for Practically Viable Lead-Free Incipient Piezoceramics," Adv. Funct. Mater., 24 [3] 356-62 (2014). https://doi.org/10.1002/adfm.201302102
  19. S.-T. Zhang, B. Yang, and W. Cao, "The Temperature-Dependent Electrical Properties of $Bi_{0.5}Na_{0.5}TiO_3-BaTiO_3-Bi_{0.5}K_{0.5}TiO_3$ near the Morphotropic Phase Boundary," Acta Mater., 60 [2] 469-75 (2012). https://doi.org/10.1016/j.actamat.2011.10.010
  20. W. F. Liu and X. B. Ren, "Large Piezoelectric Effect in Pb-Free Ceramics," Phys. Rev. Lett., 103 [25] 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602
  21. L. Zhang, M. Zhang, L. Wang, C. Zhou, Z. Zhang, Y. Yao, L. Zhang, D. Xue, X. Lou, and X. Ren, "Phase Transitions and the Piezoelectricity around Morphotropic Phase Boundary in $Ba(Zr_{0.2}Ti_{0.8})O_3-x(Ba_{0.7}Ca_{0.3})TiO_3$ Lead-Free Solid Solution," Appl. Phys. Lett., 105 [16] 162908 (2014). https://doi.org/10.1063/1.4899125
  22. S. Zhukov, Y. A. Genenko, M. Acosta, H. Humburg, W. Jo, J. Rodel, and H. Von Seggern, "Polarization Dynamics across the Morphotropic Phase Boundary in $Ba(Zr_{0.2}Ti_{0.8})O_3-x(Ba_{0.7}Ca_{0.3})TiO_3$ Ferroelectrics," Appl. Phys. Lett., 103 [15] 152904 (2013). https://doi.org/10.1063/1.4824730
  23. H. I. Humburg, M. Acosta, W. Jo, K. G. Webber, and J. Rodel, "Stress-Dependent Electromechanical Properties of Doped $(Ba_{1-x}Ca_x)(Zr_yTi_{1-y})O_3$," J. Eur. Ceram. Soc., 35 [4] 1209-17 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.10.016
  24. S. Lu, Z. Xu, S. Su, and R. Zuo, "Temperature Driven Nano-Domain Evolution in Lead-Free $Ba(Zr_{0.2}Ti_{0.8})O_3-50(Ba_{0.7}Ca_{0.3})TiO_3$ Piezoceramics," Appl. Phys. Lett., 105 [3] 032903 (2014). https://doi.org/10.1063/1.4891756
  25. J. Gao, X. Hu, L. Zhang, F. Li, L. Zhang, Y. Wang, Y. Hao, L. Zhong, and X. Ren, "Major Contributor to the Large Piezoelectric Response in $(1-x)Ba(Zr_{0.2}Ti_{0.8})O_3-x(Ba_{0.7}Ca_{0.3})-TiO_3$ Ceramics: Domain Wall Motion," Appl. Phys. Lett., 104 [25] 252909 (2014). https://doi.org/10.1063/1.4885675
  26. D. Jun Li, S. Hong, S. Gu, Y. Y. Choi, S. Nakhmanson, O. Heinonen, D. Karpeev, and K. No, "Polymer Piezoelectric Energy Harvesters for Low Wind Speed," Appl. Phys. Lett., 104 [1] 604-8 (2014).
  27. D. Kim, H. Roh, Y. Kim, K. No, and S. Hong, "Selective Current Collecting Design for Spring-Type Energy Harvesters," RSC Adv., 5 [14] 10662-66 (2015). https://doi.org/10.1039/C4RA16443A
  28. Y. Y. Choi, P. Sharma, C. Phatak, D. J. Gosztola, Y. Liu, J. Lee, B. Lee, J. Li, A. Gruverman, and S. Ducharme, "Enhancement of Local Piezoresponse in Polymer Ferroelectrics via Nanoscale Control of Microstructure," ACS Nano, 9 [2] 1809 (2015). https://doi.org/10.1021/nn5067232
  29. Y. Y. Choi, T. G. Yun, N. Qaiser, H. Paik, H. S. Roh, J. Hong, S. Hong, S. M. Han, and K. No, "Vertically Aligned P(VDF-TrFE) Core-Shell Structures on Flexible Pillar Arrays," Sci. Rep., 5 10728 (2015). https://doi.org/10.1038/srep10728
  30. H. Paik, Y. Y. Choi, S. Hong, and K. No, "Effect of Ag Nanoparticle Concentration on the Electrical and Ferroelectric Properties of Ag/P(VDF-TrFE) Composite Films," Sci. Rep., 5 13209 (2015). https://doi.org/10.1038/srep13209
  31. Y. Y. Choi, T. Sheng, S. Ducharme, A. Roelofs, and S. Hong, "Charge Collection Kinetics on Ferroelectric Polymer Surface Using Charge Gradient Microscopy," Sci. Rep., 6 25087 (2016). https://doi.org/10.1038/srep25087
  32. L. W. Martin, Y. H. Chu, and R. Ramesh, "Emerging Multiferroic Memories," pp. 103-66 in Emerging Non-Volatile Memories, Springer, New York, 2014.
  33. S. Hong, J. A. Klug, M. Park, A. Imre, M. J. Bedzyk, K. No, A. Petfordlong, and O. Auciello, "Nanoscale Piezoresponse Studies of Ferroelectric Domains in Epitaxial $BiFeO_3$ Nanostructures," J. Appl. Phys., 105 [6] 061619 (2009). https://doi.org/10.1063/1.3055412
  34. J. A. Klug, M. V. Holt, R. N. Premnath, A. Joshi-Imre, S. Hong, R. S. Katiyar, M. J. Bedzyk, and O. Auciello, "Elastic Relaxation and Correlation of Local Strain Gradients with Ferroelectric Domains in (001) $BiFeO_3$ Nanostructures," Appl. Phys. Lett., 99 [5] 21-58 (2011).
  35. M. Park, K. No, and S. Hong, "Visualization and Manipulation of Meta-Stable Polarization Variants in Multiferroic Materials," Aip Adv., 3 [4] 747 (2013).
  36. K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, and J. Zhu, "Superior Piezoelectric Properties in Potassium-Sodium Niobate Lead-Free Ceramics," Adv. Mater., 28 [38] 8519-23 (2016). https://doi.org/10.1002/adma.201601859
  37. B. Wu, H. Wu, J. Wu, D. Xiao, J. Zhu, and S. J. Pennycook, "Giant Piezoelectricity and High Curie Temperature in Nanostructured Alkali Niobate Lead-Free Piezoceramics through Phase Coexistence," J. Am. Chem. Soc., 138 [47] 15459-64 (2016). https://doi.org/10.1021/jacs.6b09024
  38. T. Zheng and J. Wu, "Relationship between Poling Characteristics and Phase Boundaries of Potassium-Sodium Niobate Ceramics," ACS Appl. Mater. Interfaces, 8 [14] 9242-46 (2016). https://doi.org/10.1021/acsami.6b01796
  39. X. Lv, J. Wu, S. Yang, D. Xiao, and J. Zhu, "Identification of Phase Boundaries and Electrical Properties in Ternary Potassium-Sodium Niobate-Based Ceramics," ACS Appl. Mater. Interfaces, 8 [29] 18943-53 (2016). https://doi.org/10.1021/acsami.6b04288
  40. F.-Z. Yao, K. Wang, W. Jo, K. G. Webber, T. P. Comyn, J.-X. Ding, B. Xu, L.-Q. Cheng, M.-P. Zheng, Y.-D. Hou, and J.-F. Li, "Diffused Phase Transition Boosts Thermal Stability of High-Performance Lead-Free Piezoelectrics," Adv. Funct. Mater., 26 [8] 1217-24 (2016). https://doi.org/10.1002/adfm.201504256
  41. M. H. Zhang, K. Wang, J. S. Zhou, J. J. Zhou, X. Chu, X. Lv, J. Wu, and J. F. Li, "Thermally Stable Piezoelectric Properties of (K,Na)$NbO_3$-Based Lead-Free Perovskite with Rhombohedral-Tetragonal Coexisting Phase," Acta Mater., 122 344-51 (2017). https://doi.org/10.1016/j.actamat.2016.10.011
  42. M. H. Zhang, K. Wang, Y. J. Du, G. Dai, W. Sun, G. Li, D. Hu, H. C. Thong, C. Zhao, X. Q. Xi, Z. X. Yue, and J. F. Li, "High and Temperature-Insensitive Piezoelectric Strain in Alkali Niobate Lead-Free Perovskite," J. Am. Chem. Soc., 139 [10] 3889-95 (2017). https://doi.org/10.1021/jacs.7b00520
  43. Q. Li, M.-H. Zhang, Z.-X. Zhu, K. Wang, J.-S. Zhou, F.-Z. Yao, and J.-F. Li, "Poling Engineering of (K,Na)$NbO_3$-Based Lead-Free Piezoceramics with Orthorhombic-Tetragonal Coexisting Phases," J. Mater. Chem. C, 5 [3] 549-56 (2017). https://doi.org/10.1039/C6TC04723H
  44. Y. Qin, J. Zhang, Y. Tan, W. Yao, C. Wang, and S. Zhang, "Domain Configuration and Piezoelectric Properties of $(K_{0.50}Na_{0.50})_{1-x}Li_x(Nb_{0.80}Ta_{0.20})O_3$ Ceramics," J. Eur. Ceram. Soc., 34 [16] 4177-84 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.07.026
  45. K. Wang, F.-Z. Yao, J. Koruza, L.-Q. Cheng, F. H. Schader, M.-H. Zhang, J. Rodel, J.-F. Li, and K. G. Webber, "Electromechanical Properties of $CaZrO_3$ Modified (K,Na)$NbO_3$-Based Lead-Free Piezoceramics under Uniaxial Stress Conditions," J. Am. Ceram. Soc., 100 [5] 2116-22 (2017). https://doi.org/10.1111/jace.14661
  46. S. V. Kalinin and D. A. Bonnell, "Imaging Mechanism of Piezoresponse Force Microscopy of Ferroelectric Surfaces," Phys. Rev. B, 65 [12] 125408 (2002). https://doi.org/10.1103/PhysRevB.65.125408
  47. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, "Lead-Free Piezoceramics," Nature, 432 [7013] 84-7 (2004). https://doi.org/10.1038/nature03028
  48. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, and X. Wang, "Giant Piezoelectricity in Potassium-Sodium Niobate Lead-Free Ceramics," J. Am. Chem. Soc., 136 [7] 2905-10 (2014). https://doi.org/10.1021/ja500076h
  49. K. Wang, F.-Z. Yao, W. Jo, D. Gobeljic, V. V. Shvartsman, D. C. Lupascu, J.-F. Li, and J. Rodel, "Temperature-Insensitive (K,Na)$NbO_3$-Based Lead-Free Piezoactuator Ceramics," Adv. Funct. Mater., 23 [33] 4079-86 (2013). https://doi.org/10.1002/adfm.201203754
  50. G. Binnig, C. F. Quate, and C. Gerber, "Atomic Force Microscope," Phys. Rev. Lett., 56 [9] 930-33 (1986). https://doi.org/10.1103/PhysRevLett.56.930
  51. S. Hong, J. Woo, H. Shin, J. U. Jeon, Y. E. Pak, E. L. Colla, N. Setter, E. Kim, and K. No, "Principle of Ferroelectric Domain Imaging Using Atomic Force Microscope," J. Appl. Phys., 89 [2] 1377-86 (2001). https://doi.org/10.1063/1.1331654
  52. S. Hong, E. L. Colla, E. Kim, D. V. Taylor, A. K. Tagantsev, P. Muralt, K. No, and N. Setter, "High Resolution Study of Domain Nucleation and Growth during Polarization Switching in Pb(Zr,Ti)$O_3$ Ferroelectric Thin Film Capacitors," J. Appl. Phys., 86 [1] 607-13 (1999). https://doi.org/10.1063/1.370774
  53. E. L. Colla, S. Hong, D. V. Taylor, A. K. Tagantsev, N. Setter, and K. No, "Direct Observation of Region by Region Suppression of the Switchable Polarization (Fatigue) in Pb(Zr,Ti)$O_3$ Thin Film Capacitors with Pt Electrodes," Appl. Phys. Lett., 72 [21] 2763-65 (1998). https://doi.org/10.1063/1.121083
  54. R. Nath, S. Hong, J. A. Klug, A. Imre, M. J. Bedzyk, R. S. Katiyar, and O. Auciello, "Effects of Cantilever Buckling on Vector Piezoresponse Force Microscopy Imaging of Ferroelectric Domains in $BiFeO_3$ Nanostructures," Appl. Phys. Lett., 96 [16] 163101 (2010). https://doi.org/10.1063/1.3327831
  55. M. Park, S. Hong, J. A. Klug, M. J. Bedzyk, O. Auciello, K. No, and A. Petford-Long, "Three-Dimensional Ferroelectric Domain Imaging of Epitaxial $BiFeO_3$ Thin Films Using Angle-Resolved Piezoresponse Force Microscopy," Appl. Phys. Lett., 97 [11] 112907 (2010). https://doi.org/10.1063/1.3487933
  56. J.-S. Zhou, K. Wang, F.-Z. Yao, T. Zheng, J. Wu, D. Xiao, J. Zhu, and J.-F. Li, "Multi-Scale Thermal Stability of Niobate-Based Lead-Free Piezoceramics with Large Piezoelectricity," J. Mater. Chem. C, 3 [34] 8780-87 (2015). https://doi.org/10.1039/C5TC01357G
  57. F.-Z. Yao, K. Wang, L.-Q. Cheng, X. Zhang, W. Zhang, F. Zhu, and J.-F. Li, "Nanodomain Engineered (K,Na)$NbO_3$ Lead-Free Piezoceramics: Enhanced Thermal and Cycling Reliabilities," J. Am. Ceram. Soc., 98 [2] 448-54 (2015). https://doi.org/10.1111/jace.13265
  58. F. Z. Yao, Q. Yu, K. Wang, Q. Li, and J. F. Li, "Ferroelectric Domain Morphology and Temperature-Dependent Piezoelectricity of (K,Na,Li)(Nb,Ta,Sb)$O_3$ Lead-Free Piezoceramics," RSC Adv., 4 [39] 20062-68 (2014). https://doi.org/10.1039/C4RA01697A
  59. J. Zhang, X. Tian, Y. Gao, W. Yao, Y. Qin, and W. Su, "Domain Structure of Poled $(K_{0.50}Na_{0.50})_{1-x}Li_xNbO_3$ Ceramics with Different Stabilities," J. Am. Ceram. Soc., 98 [3] 990-95 (2015). https://doi.org/10.1111/jace.13358
  60. T. Rojac, H. Ursic, A. Bencan, B. Malic, and D. Damjanovic, "Mobile Domain Walls as a Bridge between Nanoscale Conductivity and Macroscopic Electromechanical Response," Adv. Funct. Mater., 25 [14] 2099-108 (2015). https://doi.org/10.1002/adfm.201402963
  61. J. Doring, L. M. Eng, and S. C. Kehr, "Low-Temperature Piezoresponse Force Microscopy on Barium Titanate," J. Appl. Phys., 120 [8] 084103 (2016). https://doi.org/10.1063/1.4961523
  62. J. Luo, W. Sun, Z. Zhou, Y. Bai, Z. J. Wang, G. Tian, D. Chen, X. Gao, F. Zhu, and J. F. Li, "Domain Evolution and Piezoelectric Response across Thermotropic Phase Boundary in (K,Na)$NbO_3$-Based Epitaxial Thin Films," ACS Appl. Mater. Interfaces, 9 [15] 13315-22 (2017). https://doi.org/10.1021/acsami.7b02263
  63. Y. Kim, J. Kim, S. Buhlmann, S. Hong, K. K. Yong, S. H. Kim, and K. No, "Screen Charge Transfer by Grounded Tip on Ferroelectric Surfaces," Phys. Stat. Sol., 2 [2] 74-6 (2008). https://doi.org/10.1002/pssr.200701265
  64. S. Hong, S. Tong, W. I. Park, Y. Hiranaga, Y. Cho, and A. Roelofs, "Charge Gradient Microscopy," Proc. Natl. Acad. Sci. U. S. A., 111 [18] 6566-69 (2014). https://doi.org/10.1073/pnas.1324178111
  65. S. Tong, W. I. Park, Y. Y. Choi, L. Stan, S. Hong, and A. Roelofs, "Mechanical Removal and Rescreening of Local Screening Charges at Ferroelectric Surfaces," Phys. Rev. Appl., 3 [1] 014003 (2015). https://doi.org/10.1103/PhysRevApplied.3.014003
  66. S. Hong, H. Shin, J. Woo, and K. No, "Effect of Cantilever-Sample Interaction on Piezoelectric Force Microscopy," Appl. Phys. Lett., 80 [8] 1453-55 (2002). https://doi.org/10.1063/1.1454219
  67. L. Q. Cheng, K. Wang, J. F. Li, Y. M. Liu, and J. Y. Li, "Piezoelectricity of Lead-Free (K,Na)$NbO_3$ Nanoscale Single Crystals," J. Mater. Chem. C, 2 [43] 9091-98 (2014). https://doi.org/10.1039/C4TC01745E
  68. G. Haugstad, Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications; pp. 57-8, John Wiley & Sons, 2012.
  69. T. L. Men, H. C. Thong, J. T. Li, M. Li, J. Zhang, V. Zhong, J. Luo, X. C. Chu, K. Wang, and J. F. Li, "Domain Growth Dynamics in (K,Na)$NbO_3$ Ferroelectric Thin Films," Ceram. Int., 43 [12] 9538-42 (2017). https://doi.org/10.1016/j.ceramint.2017.03.180
  70. J. Woo, S. Hong, N. Setter, H. Shin, J. U. Jeon, Y. E. Pak, and K. No, "Quantitative Analysis of the Bit Size Dependence on the Pulse Width and Pulse Voltage in Ferroelectric Memory Devices Using Atomic Force Microscopy," J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom., 19 [3] 818-24 (2001). https://doi.org/10.1116/1.1364697
  71. J. Woo, S. Hong, D. K. Min, H. Shin, and K. No, "Effect of Domain Structure on Thermal Stability of Nanoscale Ferroelectric Domains," Appl. Phys. Lett., 80 [21] 4000-2 (2002). https://doi.org/10.1063/1.1481537
  72. J. M. Atkin, S. Berweger, A. C. Jones, and M. B. Raschke, "Nano-Optical Imaging and Spectroscopy of Order, Phases, and Domains in Complex Solids," Adv. Phys., 61 [6] 745-842 (2012). https://doi.org/10.1080/00018732.2012.737982
  73. S. Berweger, C. C. Neacsu, Y. Mao, H. Zhou, S. S. Wong, and M. B. Raschke, "Optical Nanocrystallography with Tip-Enhanced Phonon Raman Spectroscopy," Nat. Nanotechnol., 4 [8] 496-99 (2009). https://doi.org/10.1038/nnano.2009.190

Cited by

  1. Recent Developments in Piezoelectric Crystals vol.55, pp.5, 2018, https://doi.org/10.4191/kcers.2018.55.5.12
  2. ‐based ceramics vol.101, pp.9, 2018, https://doi.org/10.1111/jace.15695
  3. Tunable Out-of-Plane Piezoelectricity in Thin-Layered MoTe2 by Surface Corrugation-Mediated Flexoelectricity vol.10, pp.32, 2017, https://doi.org/10.1021/acsami.8b06325
  4. Investigations of ferroelectric polycrystalline bulks and thick films using piezoresponse force microscopy vol.475, pp.2223, 2019, https://doi.org/10.1098/rspa.2018.0782
  5. Effect of MnO2 and CuO Addition on Microstructure and Piezoelectric Properties of 0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O vol.29, pp.3, 2017, https://doi.org/10.3740/mrsk.2019.29.3.150
  6. Tunable Ferroelectricity in Ruddlesden-Popper Halide Perovskites vol.11, pp.14, 2017, https://doi.org/10.1021/acsami.8b21579
  7. 과 액상 형성에 의한 비납계 압전 (Na,K)NbO3-Ba(Cu,Nb)O3 결정립의 비정상 성장 거동 및 전기적 특성 vol.29, pp.4, 2017, https://doi.org/10.3740/mrsk.2019.29.4.205
  8. Effect of Solution Conditions on the Properties of Sol-Gel Derived Potassium Sodium Niobate Thin Films on Platinized Sapphire Substrates vol.9, pp.11, 2017, https://doi.org/10.3390/nano9111600
  9. Peculiar piezoelectricity of atomically thin planar structures vol.12, pp.5, 2020, https://doi.org/10.1039/c9nr08063e
  10. Nano-domains in lead-free piezoceramics: a review vol.8, pp.20, 2017, https://doi.org/10.1039/d0ta03201h
  11. 비납계 (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) 압전 세라믹의 비정상 결정 성장 거동 비교 vol.30, pp.7, 2017, https://doi.org/10.3740/mrsk.2020.30.7.343
  12. Templated Grain Growth for High-Performance Lead-Free Piezoceramics vol.24, pp.2, 2017, https://doi.org/10.31613/ceramist.2021.24.2.02
  13. Giant Grain Growth in (K,Na)NbO3 Ceramics vol.24, pp.3, 2017, https://doi.org/10.31613/ceramist.2021.24.3.08