DOI QR코드

DOI QR Code

Photocatalytic Performance of CoS2-Graphene-TiO2 Ternary Composites for Reactive Black B (RBB) Degradation

  • Ali, Asghar (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2017.05.18
  • Accepted : 2017.07.07
  • Published : 2017.07.31

Abstract

In this study we examined the photo-degradation efficiency of $CoS_2-G-TiO_2$ nanocomposites under visible light irritation using Reactive Black B (RBB) as standard dye, $CoS_2-G-TiO_2$ nanocomposites synthesized by facial microwave assist technique, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopic analysis. Our results show the efficiency of the $CoS_2-G-TiO_2$ ternary nanocomposite is better than $CoS_2-G$ and $TiO_2-G$ nanocomposite. The degradation efficiency of $CoS_2-G-TiO_2$ nanocomposite was found approximately 89% of Reactive Black B (RBB) degraded after 180 min. Our results will open new way for the development of a new ternary nanocomposite photocatalytic application.

Keywords

References

  1. M. S. Lucas and J. A. Peres, "Decolorization of the Azo Dye Reactive Black 5 by Fenton and Photo-Fenton Oxidation," Dyes Pigm., 71 [3] 236-44 (2006). https://doi.org/10.1016/j.dyepig.2005.07.007
  2. R. Pourata, A. Khataee, S. Aber, and N. Daneshvar, "Removal of the Herbicide Bentazon from Contaminated Water in the Presence of Synthesized Nanocrystalline $TiO_2$ Powders under Irradiation of UV-C Light," Desalination, 249 [1] 301-7 (2009). https://doi.org/10.1016/j.desal.2008.10.033
  3. N. Daneshvar, A. Khataee, M. Rasoulifard, and M. Pourhassan, "Biodegradation of Dye Solution Containing Malachite Green: Optimization of Effective Parameters Using Taguchi Method," J. Hazard. Mater., 143 [1] 214-19 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.016
  4. N. Daneshvar, H. A. Sorkhabi, and M. Kasiri, "Decolorization of Dye Solution Containing Acid Red 14 by Electrocoagulation with a Comparative Investigation of Different Electrode Connections," J. Hazard. Mater., 112 [1] 55-62 (2004). https://doi.org/10.1016/j.jhazmat.2004.03.021
  5. N. Daneshvar, S. Aber, A. Khani, and A. Khataee, "Study of Imidaclopride Removal from Aqueous Solution by Adsorption onto Granular Activated Carbon Using an Online Spectrophotometric Analysis System," J. Hazard. Mater., 144 [1] 47-51 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.081
  6. N. Daneshvar, M. Ayazloo, A. Khataee, and M. Pourhassan, "Biological Decolorization of Dye Solution Containing Malachite Green by Microalgae Cosmarium sp," Bioresour. Technol., 98 [6] 1176-82 (2007). https://doi.org/10.1016/j.biortech.2006.05.025
  7. A. Khataee and M. B. Kasiri, "Photocatalytic Degradation of Organic Dyes in the Presence of Nanostructured Titanium Dioxide: Influence of the Chemical Structure of Dyes," J. Mol. Catal. A: Chem., 328 [1] 8-26 (2010). https://doi.org/10.1016/j.molcata.2010.05.023
  8. J. Madhavan, P. Maruthamuthu, S. Murugesan, and S. Anandan, "Kinetic Studies on Visible Light-Assisted Degradation of Acid Red 88 in Presence of Metal-Ion Coupled Oxone Reagent," Appl. Catal., B, 83 [1] 8-14 (2008). https://doi.org/10.1016/j.apcatb.2008.01.021
  9. S. Wang, X. Wu, W. Qin, and Z. Jiang, "$TiO_2$ Films Prepared by Micro-Plasma Oxidation Method for Dye-Sensitized Solar Cell," Electrochim. Acta, 53 [4] 1883-89 (2007). https://doi.org/10.1016/j.electacta.2007.08.039
  10. K. Sayama, K. Mukasa, R. Abe, Y. Abe, and H. Arakawa, "Stoichiometric Water Splitting into $H_2$ and $O_2$ Using a Mixture of Two Different Photocatalysts and an $IO_3{^-}/I{^-}$ Shuttle Redox Mediator under Visible Light Irradiation," Chem. Commun., 23 2416-17 (2001).
  11. K. Sayama, K. Mukasa, R. Abe, Y. Abe, and H. Arakawa, "A New Photocatalytic Water Splitting System under Visible Light Irradiation Mimicking a Z-scheme Mechanism in Photosynthesis," J. Photochem. Photobiol., A, 148 [1] 71-7 (2002). https://doi.org/10.1016/S1010-6030(02)00070-9
  12. A. Oliva, O. Soli, R. Castro-Rodri, and P. Quintana, "Formation of the Band Gap Energy on CdS Thin Films Growth by Two Different Techniques," Thin Solid Films, 391 [1] 28-35 (2001). https://doi.org/10.1016/S0040-6090(01)00830-6
  13. L. B. Reutergadh and M. Iangphasuk, "Photocatalytic Decolourization of Reactive Azo Dye: A Comparison between $TiO_2$ and us Photocatalysis," Chemosphere, 35 [3] 585-96 (1997). https://doi.org/10.1016/S0045-6535(97)00122-7
  14. K. Moazzami, T. Murphy, J. Phillips, M. C. Cheung, and A. Cartwright, "Sub-Bandgap Photoconductivity in ZnO Epilayers and Extraction of Trap Density Spectra," Semicond. Sci. Technol., 21 [6] 717 (2006). https://doi.org/10.1088/0268-1242/21/6/001
  15. F. W. Wise, "Lead Salt Quantum Dots: the Limit of Strong Quantum Confinement," Acc. Chem. Res., 33 [11] 773-80 (2000). https://doi.org/10.1021/ar970220q
  16. B. Abrams and J. Wilcoxon, "Nanosize Semiconductors for Photooxidation," Crit. Rev. Solid State Mater. Sci., 30 [3] 153-82 (2005). https://doi.org/10.1080/10408430500200981
  17. Y. Zhang, Z.-R. Tang, X. Fu, and Y.-J. Xu, "Engineering the Unique 2D Mat of Graphene to Achieve Graphene-$TiO_2$ Nanocomposite for Photocatalytic Selective Transformation: What Advantage Does Graphene Have over its Forebear Carbon Nanotube?," ACS Nano, 5 [9] 7426-35 (2011). https://doi.org/10.1021/nn202519j
  18. N. Zhang, Y. Zhang, X. Pan, M.-Q. Yang, and Y.-J. Xu, "Constructing Ternary CdS-Graphene-$TiO_2$ Hybrids on the Flatland of Graphene Oxide with Enhanced Visible-Light Photoactivity for Selective Transformation," J. Phys. Chem. C, 116 [34] 18023-31 (2012). https://doi.org/10.1021/jp303503c
  19. M. J. Allen, V. C. Tung, and R. B. Kaner, "Honeycomb Carbon: A Review of Graphene," Chem. Rev., 110 [1] 132-45 (2009). https://doi.org/10.1021/cr900070d
  20. A. K. Geim, "Graphene: Status and Prospects," Science, 324 1530-34 (2009). https://doi.org/10.1126/science.1158877
  21. J. Mosselmans, R. Pattrick, G. Van der Laan, J. Charnock, D. Vaughan, C. Henderson, and C. Garner, "X-ray Absorption Near-Edge Spectra of Transition Metal Disulfides $FeS_2$ (Pyrite and Marcasite), $CoS_2$, $NiS_2$ and $CuS_2$, and their Isomorphs FeAsS and CoAsS," Phys. Chem. Miner., 22 [5] 311-17 (1995). https://doi.org/10.1007/BF00202771
  22. A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, and S. Roth, "Raman Spectrum of Graphene and Graphene Layers," Phys. Rev. Lett., 97 [18] 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
  23. F. Tuinstra and J. L. Koenig, "Raman Spectrum of Graphite," J. Chem. Phys., 53 [3] 1126-30 (1970). https://doi.org/10.1063/1.1674108
  24. C. Castiglioni, F. Negri, M. Rigolio, and G. Zerbi, "Raman Activation in Disordered Graphites of the A1' Symmetry Forbidden k ${\neq}$ 0 Phonon: The Origin of the D line," J. Chem. Phys., 115 [8] 3769-78 (2001). https://doi.org/10.1063/1.1381529
  25. L. Zhu, D. Susac, M. Teo, K. Wong, P. Wong, R. Parsons, D. Bizzotto, K. Mitchell, and S. Campbell, "Investigation of $CoS_2$-Based Thin Films as Model Catalysts for the Oxygen Reduction Reaction," J. Catal., 258 [1] 235-42 (2008). https://doi.org/10.1016/j.jcat.2008.06.016
  26. Q. Xiang, J. Yu, and M. Jaroniec, "Enhanced Photocatalytic $H_2$-Production Activity of Graphene-Modified Titania Nanosheets," Nanoscale, 3 [9] 3670-78 (2011). https://doi.org/10.1039/c1nr10610d
  27. G. Zhou, D.-W. Wang, L.-C. Yin, N. Li, F. Li, and H.-M. Cheng, "Oxygen Bridges between NiO Nanosheets and Graphene for Improvement of Lithium Storage," ACS Nano, 6 [4] 3214-23 (2012). https://doi.org/10.1021/nn300098m
  28. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. Prud, I. Aksay, and R. Car, "Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets," Nano Lett., 8 [1] 36-41 (2008). https://doi.org/10.1021/nl071822y
  29. Z.-D. Menga, K. Ullah, L. Zhu, S. Ye, and W.-C. Oh, "Modified Hydrothermal Fabrication of a $CoS_2$-Graphene Hybrid with Improved Photocatalytic Performance," Mater. Sci. Semicond. Process., 27 173-80 ( 2014). https://doi.org/10.1016/j.mssp.2014.06.016
  30. L. Zhu, S.-B. Joa, Y. Shu , K. Ullah, Z.-D. Meng, and W.-C. Oh, "A Green and Direct Synthesis of Photosensitized $CoS_2$-Graphene/$TiO_2$ Hybrid with High Photocatalytic Performance," J. Ind. Eng. Chem., 22 264-71 (2015). https://doi.org/10.1016/j.jiec.2014.07.019
  31. R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, D. Tishler, A. Rao, and I. M. Shigami, "Effect of Layer Stacking on the Combination Raman Modle in Graphene," ACS Nano, 5 [3] 1594-99 (2011). https://doi.org/10.1021/nn1031017
  32. S. Thangavel, G. Venugopal, and S.-J. Kim, "Enhanced Photocatalytic Efficacy of Organic Dyes Using ${\beta}$-tin Tungstate-Reduced Graphene Oxide Nanocomposites," Mater. Chem. Phys., 145 [1] 108-15 (2014). https://doi.org/10.1016/j.matchemphys.2014.01.046

Cited by

  1. for a direct z-scheme exerting photocatalytic activities vol.8, pp.59, 2018, https://doi.org/10.1039/C8RA04499F
  2. Synthesis and Characterization of TiO2/CuS Nanocomposite Fibers as a Visible Light-Driven Photocatalyst vol.55, pp.3, 2018, https://doi.org/10.4191/kcers.2018.55.3.05
  3. SnS2/TiO2 Nanocomposites for Hydrogen Production and Photodegradation under Extended Solar Irradiation vol.11, pp.5, 2017, https://doi.org/10.3390/catal11050589
  4. Recent Progress and Approaches on Transition Metal Chalcogenides for Hydrogen Production vol.14, pp.24, 2017, https://doi.org/10.3390/en14248265