DOI QR코드

DOI QR Code

Nonstoichiometric Effects in the Leakage Current and Electrical Properties of Bismuth Ferrite Ceramics

  • Woo, Jeong Wook (School of Advanced Materials Engineering, Changwon National University) ;
  • Baek, SeungBong (School of Advanced Materials Engineering, Changwon National University) ;
  • Song, Tae Kwon (School of Advanced Materials Engineering, Changwon National University) ;
  • Lee, Myang Hwan (School of Advanced Materials Engineering, Changwon National University) ;
  • Rahman, Jamil Ur (School of Advanced Materials Engineering, Changwon National University) ;
  • Kim, Won-Jeong (Department of Physics, Changwon National University) ;
  • Sung, Yeon Soo (Department of Materials and Engineering, Pohang University of Science and Technology) ;
  • Kim, Myong-Ho (School of Advanced Materials Engineering, Changwon National University) ;
  • Lee, Soonil (Energy and Environmental Materials Division, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2017.05.24
  • Accepted : 2017.06.22
  • Published : 2017.07.31

Abstract

To understand the defect chemistry of multiferroic $BiFeO_3-based$ systems, we synthesized nonstoichiometric $Bi_{1+x}FeO_{3{\pm}{\delta}}$ ceramics by conventional solid-state reaction method and studied their structural, dielectric and high-temperature charge transport properties. Incorporation of an excess amount of $Bi_2O_3$ lowered the Bi deficiency in $BiFeO_3$. Polarization versus electric field (P-E) hysteresis loop and dielectric properties were found to be improved by the $Bi_2O_3$ addition. To better understand the defect effects on the multiferroic properties, the high temperature equilibrium electrical conductivity was measured under various oxygen partial pressures ($pO_2{^{\prime}}s$). The charge transport behavior was also examined through thermopower measurement. It was found that the oxygen vacancies contribute to high ionic conduction, showing $pO_2$ independency, and the electronic carrier is electron (n-type) in air and Ar gas atmospheres.

Keywords

References

  1. M. H. Lee, D. J. Kim, J. S. Park, S. W. Kim, T. K. Song, M.-H. Kim, W.-J. Kim, D. Do, and I.-K. Jeong, "High-Performance Lead-Free Piezoceramics with High Curie Temperatures," Adv. Mater., 27 [43] 6976-82 (2015). https://doi.org/10.1002/adma.201502424
  2. K. T. Lee, J. S. Park, J. H. Cho, Y. H. Jeong, J. H. Paik, and J. S. Yun, "The Study on the Phase Transition and Piezoelectric Properties of $Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO_3-LaMnO_3$ Lead-Free Piezoelectric Ceramics," J. Korean Ceram. Soc., 52 [4] 237-42 (2015). https://doi.org/10.4191/kcers.2015.52.4.237
  3. J. Kim, I. Seo, J. Hur, D. Kim, and S. Nahm, "Effect of $MnO_2$ Addition on Microstructure and Piezoelectric Properties of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05CaTiO_3$ Piezoelectric Ceramics," J. Korean Ceram. Soc., 53 [2] 129-33 (2016). https://doi.org/10.4191/kcers.2016.53.2.129
  4. H. Han, I. Hong, Y. Kong, J. Lee, and W. Jo, "Effect of Nb Doping on the Dielectric and Strain Properties of Lead-free $0.94(Bi_{1/2}Na_{1/2})TiO_3-0.06BaTiO_3$ Ceramics," J. Korean Ceram. Soc., 53 [2] 145-49 (2016). https://doi.org/10.4191/kcers.2016.53.2.145
  5. L. W. Martin, S. P. Crane, Y.-H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, N. Balke, and R. Ramesh, "Multiferroics and Magnetoelectrics: Thin Films and Nanostructures," J. Phys.: Condens. Matter., 20 [43] 434220 (2008). https://doi.org/10.1088/0953-8984/20/43/434220
  6. X.-Z. Chen, R.-L. Yang, J.-P. Zhou, X.-M. Chen, Q. Jiang, and P. Liu, "Dielectric and Magnetic Properties of Multiferroic $BiFeO_3$ Ceramics Sintered with the Powders Prepared by Hydrothermal Method," Solid State Sci., 19 117-21 (2013). https://doi.org/10.1016/j.solidstatesciences.2013.02.012
  7. J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, "First-Principles Study of Spontaneous Polarization in Multiferroic $BiFeO_3$," Phys. Rev. B, 71 [1] 014113 (2005). https://doi.org/10.1103/PhysRevB.71.014113
  8. Z. Zhang, P. Wu, L. Chen, and J. Wang, "Density Functional Theory Plus U Study of Vacancy Formations in Bismuth Ferrite," Appl. Phys. Lett., 96 [23] 232906 (2010). https://doi.org/10.1063/1.3447369
  9. S. Guilin, S. Jian, N. Zhang, and C. Fanggao, "Effects of Oxgen Content on the Electric and Magnetic Properties of $BiFeO_3$ Compound," Phys. B, 493 47-52 (2016). https://doi.org/10.1016/j.physb.2016.03.008
  10. S. M. Selbach, M.-A. Einarsrud, and T. Grande, "On the Thermodynamic Stability of $BiFeO_3$," Chem. Mater., 21 [1] 169-73 (2009). https://doi.org/10.1021/cm802607p
  11. S. M. Selbach, T. Tybell, M.-A. Einarsrud, and T. Grande, "Phase Transitions, Electrical Conductivity and Chemical Stability of $BiFeO_3$ at High Temperatures," J. Solid State Chem., 183 [5] 1205-8 (2010). https://doi.org/10.1016/j.jssc.2010.03.014
  12. Z. Dai and Y. Akishige, "Electrical Properties of Multiferroic $BiFeO_3$ Ceramics Synthesized by Spark Plasma Sintering," J. Phys. D: Appl. Phys., 43 [44] 445403 (2010). https://doi.org/10.1088/0022-3727/43/44/445403
  13. A. Perejon, N. Maso, A. R. West, P. E. Sanchez-Jimenez, R. Poyato, J. M. Criado, and L. A. Perez-Maqueda, "Electrical Properties of Stoichiometric $BiFeO_3$ Prepared by Mechanosynthesis with Either Conventional or Spark Plasma Sintering," J. Am. Ceram. Soc., 96 [4] 1220-27 (2013). https://doi.org/10.1111/jace.12186
  14. N. Jeon, K.-S. Moon, D. Rout, and S.-J. L. Kang, "Enhanced Sintering Behavior and Electrical Properties of Single Phase $BiFeO_3$ Prepared by Attrition Milling and Conventional Sintering," J. Korean Ceram. Soc., 49 [6] 485-92 (2012). https://doi.org/10.4191/kcers.2012.49.6.485
  15. D. Rout, K.-S. Moon, and S.-J. L. Kang, "Temperature-Dependent Raman Scattering Studies of Polycrystalline $BiFeO_3$ Bulk Ceramics," J. Raman Spectrosc., 40 [6] 618-26 (2009). https://doi.org/10.1002/jrs.2172
  16. R.-Q. Yin, B.-W. Dai, P. Zheng, J.-J. Zhou, W.-F. Bai, F. Wen, J.-X. Deng, L. Zheng, J. Du, and H.-B. Qin, "Pure-Phase $BiFeO_3$ Ceramics with Enhanced Electrical Properties Prepared by Two-Step Sintering," Ceram. Int., 43 [8] 6467-71 (2017). https://doi.org/10.1016/j.ceramint.2017.02.063
  17. N. Maso and A. R. West, "Electrical Properties of Ca-Doped $BiFeO_3$ Ceramics: From p-Type Semiconduction to Oxide-Ion Conduction," Chem. Matter., 24 [11] 2127-32 (2012). https://doi.org/10.1021/cm300683e
  18. G. Arya, R. K. Kotnala, and N. S. Negi, "A Novel Approach to Improve Properties of $BiFeO_3$ Nanomultiferroics," J. Am. Ceram. Soc., 97 [5] 1475-80 (2014). https://doi.org/10.1111/jace.12782
  19. J. Wei, Y. Liu, X. Bai, C. Li, Y. Liu, Z. Xu, P. Gemeiner, R. Haumont, I. C. Infante, and B. Dkhil, "Crystal Structure, Leakage Conduction Mechanism Evolution and Enhanced Multiferroic Properties in Y-doped $BiFeO_3$ Ceramics," Ceram. Int., 42 [12] 13395-403 (2016). https://doi.org/10.1016/j.ceramint.2016.05.106
  20. K. Abe, N. Sakai, J. Takahashi, H. Itoh, N. Adachi, and T. Ota, "Leakage Current Properties of Cation-Substituted $BiFeO_3$ Ceramics," Jpn. J. Appl. Phys., 49 [9S] 09MB01 (2010).
  21. H.-G. Yeo, T.-K. Song, Y.-S. Sung, J.-H. Cho, H.-M. Lee, and M.-H. Kim, "Effects of Nb Substitution on the Leakage Currents and the Electrical Properties of Ceramics," New Phys.: Sae Mulli., 56 [3] 278-82 (2008).
  22. T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J. L. Jones, J. E. Daniels, and D. Damjanovic, "$BiFeO_3$ Ceramics: Processing, Electrical, Electromechanical Properties," J. Am. Ceram. Soc., 97 [7] 1993-2011 (2014). https://doi.org/10.1111/jace.12982
  23. S. J. Clacrk and J. Robertson, "Energy Levels of Oxygen Vacancies in $BiFeO_3$ by Screened Exchange," Appl. Phys. Lett., 94 [2] 022902 (2009). https://doi.org/10.1063/1.3070532
  24. H.-Y. Su and K. Sun, "DFT Study of Stability of Oxygen Vacancy in Cubic $ABO_3$ Perovskites," J. Mater. Sci., 50 [4] 1701-9 (2015). https://doi.org/10.1007/s10853-014-8731-0
  25. W. L. Warren, K. Vanheusden, D. Dimos, G. E. Pike, and B. A. Tuttle, "Oxygen Vacancy Motion in Perovskite Oxides," J. Am. Ceram. Soc., 79 [2] 536-38 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08162.x
  26. G. J. Snyder and E. S. Toberer, "Complex Thermoelectric Materials," Nat. Mater., 7 [2] 105-14 (2008). https://doi.org/10.1038/nmat2090

Cited by

  1. ceramics vol.124, pp.19, 2018, https://doi.org/10.1063/1.5055688
  2. Evolution of ferroelectric and piezoelectric response by heat treatment in pseudocubic BiFeO3-BaTiO3 ceramics vol.41, pp.1, 2017, https://doi.org/10.1007/s10832-018-0172-8
  3. 비화학양론적 Bi1±xFeO3±δ와 Ti가 첨가된 BiFeO3의 소결조건에 따른 결정구조와 미세구조 변화 vol.30, pp.2, 2020, https://doi.org/10.3740/mrsk.2020.30.2.61
  4. Enhanced Electromechanical Properties of 0.65Bi 1.05 FeO 3 -0.35BaTiO 3 Ceramics through Optimizing Sintering Conditions vol.217, pp.12, 2017, https://doi.org/10.1002/pssa.201900970
  5. Synthesis of Bismuth Ferrite and its Application for Oscillator Material up to 25 GHz Range vol.1028, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/msf.1028.9
  6. Effect of heat-treatment mechanism on structural and electromechanical properties of eco-friendly (Bi, Ba)(Fe, Ti)O3 piezoceramics vol.56, pp.23, 2017, https://doi.org/10.1007/s10853-021-06138-z
  7. 초교환 상호작용 제어를 통해 강유전 BiFeO3-BaTiO3 시스템에서 유도된 상온 강자성 거동 vol.34, pp.5, 2021, https://doi.org/10.4313/jkem.2021.34.5.386
  8. Sintering effect on the structure and multiferroic behavior of nanostructured BiMnO3 ceramic synthesized by mechanochemical route vol.585, pp.1, 2017, https://doi.org/10.1080/00150193.2021.1991224