DOI QR코드

DOI QR Code

Reinforcement of Rubber Properties by Carbon Black and Silica Fillers: A Review

  • Received : 2017.05.15
  • Accepted : 2017.05.25
  • Published : 2017.06.30

Abstract

Enhancing the properties of rubber, such as the tensile strength, modulus, and wear abrasion, by the addition of carbon black and silica as fillers is very important for improving the performance of rubber products. In this review, we summarize the general features of 'the reinforcement of rubber by fillers' and the equations for representing the reinforcement phenomena. The rubber reinforcement was attributed to enhancement of the following: the rubber, bound rubber, formation of networks, and combination between rubber chains and silica followed by entanglement. The reinforcement capability of silica species with different surface and networked states demonstrated the importance of the connection between the silica particles and the rubber chains in achieving high reinforcement. The model involving combination followed by entanglement can provide a plausible explanation of the reinforcement of rubber by carbon black and silica because the combination facilitates the concentration of rubber chains near the filler particles, and entanglement of the rubber chains around the filler particles enforces the resistance against deformation and breakage of rubber compounds, resulting in high reinforcement.

여러 종류의 고무 제품을 가정과 산업 현장에서 오래전부터 사용하여 왔기 때문에 고무 제품의 기능을 당연시하나, 고무만의 독특한 점탄성 기능에 근거한 충격 흡수 기능과 수축과 변형 능력을 다른 재료에서 찾기 어려워 고무 제품의 활용 분야가 점차 더 넓어지고 있다. 고무 제품의 사용 여건이 다양해지고 기능을 제고해야 할 필요성이 높아지면서 고무 물성을 보강하는 충전제가 고무 제품의 기계적 물성 제고뿐 아니라 고무 제품의 특수 기능을 보장하고, 생산성을 높이며, 수명을 늘리는 첨가제로서 더욱 중요해졌다. 충전제에 의한 고무의 물성 보강은 고무와 충전제의 종류, 첨가량과 가황반응 등 제조 방법과 조건에 따라 크게 달라져서 보강 효과를 간단하게 설명하기 어렵다. 지금까지 제안된 보강 기구와 보강 효과를 종합한다. 1) 고무 사슬과 충전제 사이에 친화력이나 수소결합에 의한 이음, 고무 사슬과 충전제 알갱이 사이의 화학결합, 또는 충전제 알갱이 표면이나 알갱이 사이에 고정된 이음끈 등에 의해 고무 사슬이 충전제 표면에 고정(immobilized)되고, 2) 고정된 고무 사슬이나 이음 구조, 또는 화학결합을 중심으로 고무 사슬들이 서로 얽히면서 고무 사슬의 움직임이나 변형이 제한되어 보강 효과가 나타난다. 3) 충전제 첨가량이 많으면 충전제 알갱이끼리 또는 충전제 알갱이-고무 사슬이 이어지면서 만드는 이음 구조도 고무 사슬의 움직임과 변형을 억제하여 보강 효과를 증진시킨다. 4) 충전제와 고무 사슬의 접근과 주변 고무 사슬의 얽힘으로 생성된 충전제-고무 결합체가 고무 물성을 보강하고 에너지 분산을 촉진하며 변화에 대한 저항을 증폭시켜 보강 효과를 증진한다. 5) 충전제 알갱이가 나노 크기로 아주 작아서 고무 사슬과 접촉할 수 있는 면적이 넓어져 고무-충전제 결합체가 많이 생성되고, 고무 사슬이 얽힐 수 있는 이음끈이 많으면 충전제 표면에서 고무 사슬의 농도가 높아져 보강 효과가 커진다. 종래에는 고무의 물성 보강은 인장성질과 내마모성의 증진에 초점이 맞추어져 있었지만, 사용 목적과 사회적 요구에 따라 보강 대상이 달라지고 있다. 승용차용 타이어에서 트레드 고무의 접지력과 구름저항을 동시 개선하기 위한 보강용 충전제로 실리카를 사용한다. 충전제가 단순 기능 보강에서 특수 기능의 보강으로 사용 목적이 다양해지면서, 충전제는 이제 고무 제품의 단순한 첨가제 수준을 넘어서 고무 제품의 용도를 넓히고 기능을 높이는 필수적인 물질로 발전하고 있다. 카본블랙과 실리카 등 전통적인 충전제 외에 탄소나노튜브나 그래핀 등의 새로운 충전제의 활용, 표면처리와 화학적 가공으로 판상 점토의 보강 기능 제고, 고무 내에서 충전제의 상태와 이들의 보강 기능에 대한 연구가 더욱 활발해지리라 전망한다.

Keywords

References

  1. J. L. Leblanc, "Rubber-filler interactions and rheological properties in filled compounds", Prog. Polym. Sci., 27, 627 (2002). https://doi.org/10.1016/S0079-6700(01)00040-5
  2. Y. Fukahori, "Generalized concept of the reinforcement of elastomers. Part 3: Self-reinforcement by the formation of continuous hard phase in segmented polyurethane elastomer", Rubber Chem. Technol., 80, 777 (2007). https://doi.org/10.5254/1.3539416
  3. Y. Fukahori, "Generalized concept of the reinforcement of elastomers. Part 1: Carbon black reinforcement of rubbers", Rubber Chem. Technol., 80, 701 (2007). https://doi.org/10.5254/1.3548189
  4. A. I. Medalia, "Effect of carbon black on dynamic properties of rubber vulcanizates", Rubber Chem. Technol., 51, 437 (1978). https://doi.org/10.5254/1.3535748
  5. D. C. Edwards, "Review: Polymer filler interactions in rubber reinforcement", J. Mater. Sci., 25, 4175 (1990). https://doi.org/10.1007/BF00581070
  6. S. Wolff, "Chemical aspects of rubber reinforcement by fillers", Rubber Chem. Technol., 69, 325 (1996). https://doi.org/10.5254/1.3538376
  7. M.-J. Wang, "Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates", Rubber-Chem. Technol., 71, 520 (1998). https://doi.org/10.5254/1.3538492
  8. G. R. Hamed, "Reinforcement of rubber", Rubber Chem. Technol., 73, 524 (2000). https://doi.org/10.5254/1.3547603
  9. G. Heinrich and M. Kluppel, "Recent advances in the theory of filler networking in elastomers", Adv. Polym. Sci., 160, 1 (2002).
  10. G. R. Hamed, "Rubber reinforcement and its classification", Rubber Chem. Technol., 80, 533 (2007). https://doi.org/10.5254/1.3548178
  11. D. W. Lee and B. R. Yoo, "Advanced sillica/polymer composites: Materials and applications", J. Ind. Eng. Chem., 38, 1 (2016). https://doi.org/10.1016/j.jiec.2016.04.016
  12. K. Sahakaro, "Mechanism of reinforcement using nanofillers in rubber nanocomposites", in Progress in Rubber Nanocomposites, S. Thomas and H. J. Maria Ed., Woodhead Publishing, Duxford, 2017, Chap 3.
  13. Y. Song and Q. Zheng, "Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics", Prog. Mater. Sci., 84, 1 (2016). https://doi.org/10.1016/j.pmatsci.2016.09.002
  14. C. G. Robertson, R. Bogoslovov, and C. M. Roland, "Structure arrest and thermodynamic scaling in filler-reinforced polymers", Rubber Chem. Technol., 82, 202 (2009). https://doi.org/10.5254/1.3548245
  15. B. B. Boonstra, "Reinforcement by fillers", in Rubber Technology and Manufacture, 2nd ed., C. M. Blow and C. Hepburn Ed., Butterworth Scientific, London, 1982, Chap. 7.
  16. R. Alex, "Nanofillers in rubber-rubber blends", in Rubber Nanocomposites, Preparation, Properties and Application, S. Thomas and R. Stephen Ed., John Wiley & Sons, Singapore, 2010, Chap. 9.
  17. N. Hewit, "Compounding Precipitated Silica in Elastomers, Theory and Practice", Plastics Design Library, 2007, Chap. 1.
  18. A. Kumar, S. Modi, A. Panwar, D. Schmidt, C. M. F. Barry, and J. L. Mead, "Highly impermeable nanocomposites of brominated butyl rubber with modified montmorillonite clay", Rubber Chem. Technol., 87, 579 (2014). https://doi.org/10.5254/rct.14.86929
  19. K. Kanny and T. P. Mohan, "Rubber nanocomposites with nanoclay as the filler", in Progress in Rubber Nanocomposites, S. Thomas and H. J. Maria Ed., Woodhead Publishing, Duxford, 2017, Chap 5.
  20. Y. Nakaramontri, C. Nakason, C. Kummerlowe, and N. Vennemann, "Influence of modified natural rubber on properties of natural rubber-carbon nanotube composites", Rubber Chem. Technol., 88, 199 (2015). https://doi.org/10.5254/rct.14.85949
  21. J. Kalfus and J. Jancar, "Theoretical modeling and simulation of rubber nanocomposites", in Rubber Nanocomposites, Preparation, Properties, and Applications, S. Thomas and R. Stephen Ed., John Wiley & Sons, Singapore, 2010, Chap. 5.
  22. Y. Fukahori, A. A. Hon, V. Jha, and J. J. C. Busfield, "Modified Guth-Gold equation for carbon black-filled rubbers", Rubber Chem. Technol., 86, 218 (2013). https://doi.org/10.5254/rct.13.87995
  23. G. Huber and T. A. Vilgis, "On the mechanism of hydrodynamic reinforcement in elastic composites", Macromolecules, 35, 9204 (2002). https://doi.org/10.1021/ma0208887
  24. J. H. J. van Opeusden, J. M. M. de Nus, and F. W. Wiegel, "The behavior of an ideal polymer chain interacting with two parallel surface", Physica, 134A, 59 (1985).
  25. X. Li, Z. Li, and Y. Xia, "Test and calculation of the carbon black reinforcement effect on the hyper-elastic properties of tire rubbers", Rubber Chem. Technol., 88, 98 (2015). https://doi.org/10.5254/rct.14.86932
  26. J. Liu and L. Zhang, "Computational simulation in elastomer nanocomposites", in Progress in Rubber Nanocomposites, S. Thomas and H. J. Maria Ed., Woodhead Publishing, Duxford, 2017, Chap 15.
  27. V. M. Litvinov and P. A. M. Steeman, "EPDM-carbon black interactions and the reinforcement mechanisms, As studied by low-resolution $^1H$ NMR", Macromlecules, 32, 8476 (1999). https://doi.org/10.1021/ma9910080
  28. V. M. Litvinov, H. Barthel, and J. Weis, "Structure of a PDMS layer grafted onto a silica surface studied by means of DSC and solid-state NMR", Macromlecules, 35, 4356 (2002). https://doi.org/10.1021/ma0119124
  29. F. Yatsuyanagi, H. Kaidou, and M. Ito, "Relationship between viscoelastic properties and characteristics of filler-gel in filled rubber system", Rubber Chem. Technol., 72, 657 (1999). https://doi.org/10.5254/1.3538824
  30. H. H. Hassan, E. Ateia, N. A. Darwish, S. F. Halim, and A. K. Abd El-Aziz, "Effect of filler concentration on the physicomechanical properties of super abrasion furnace black and silica loaded styrene butadiene rubber", Mater. Design, 34, 533 (2012). https://doi.org/10.1016/j.matdes.2011.05.005
  31. A. Bouty, L. Petitjean, C. Degrandcourt, J. Gummel, P. Kwaśniewski, F. Meneau, F. Boué, M. Couty, and J. Jestin, "Nanofiller structure and reinforcement in model silica/rubber composites: A quantitative correlation driven by interfacial agents", Macromolecules, 47, 5365 (2014). https://doi.org/10.1021/ma500582p
  32. W. Feng, Z. Tang, P. Weng, and B. Guo, "Correlation of filler networking with reinforcement and dynamic properties of SSBR/carbon black/silica composites", Rubber Chem. Technol., 88, 676 (2015). https://doi.org/10.5254/rct.15.84881
  33. S. S. Sternstein, S. Amanuel, and M. L. Shofner, "Reinforcement mechanisms in nanofilled polymer melts and elastomers", Rubber Chem. Technol., 83, 181 (2010). https://doi.org/10.5254/1.3548273
  34. C. G. Robertson, C. J. Lin, R. B. Bogoslovov, M. Rackaitis, P. Sadhukhan, J. D. Quinn, and C. M. Roland, "Flocculation, reinforcement, and glass transition effects in silica-filled styrene-butadiene rubber", Rubber Chem. Technol., 84, 507 (2011). https://doi.org/10.5254/1.3601885
  35. S. S. Sarkawi, W. K. Dierkes, and J. W. M. Noordermeer, "Elucidation of filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber by TEM network", Eur. Polym. J., 54, 118 (2014). https://doi.org/10.1016/j.eurpolymj.2014.02.015
  36. D. Fragiadakis, L. Bokobza, and P. Pissis, "Dynamics near the filler surface in natural rubber-silica nanocomposites", Polymer, 52, 3175 (2011). https://doi.org/10.1016/j.polymer.2011.04.045
  37. S. S. Sternstein and A.-J. Zhu, "Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior", Macromolecules, 35, 7262 (2002). https://doi.org/10.1021/ma020482u
  38. H. Samet Varol, M. Alejandra, Sánchez, H. Lu, J. E. Baio, C. Malm, N. Encinas, M. R. B. Mermet-Guyennet, N. Martzel, D. Bonn, M. Bonn, T. Weidner, E. H. G. Backus, and S. H. Parekh, "Multiscale effects of interfacial polymer confinement in silica nanocomposites", Macromolecules, 48, 7929 (2015). https://doi.org/10.1021/acs.macromol.5b01111
  39. W. Kaewsakul, K. Sahakaro, W. K. Dierkes, and J. W. M. Noordermeer, "Cooperative effects of epoxide functional groups on natural rubber and silane coupling agents on reinforcing efficiency of silica", Rubber Chem. Technol., 87, 291 (2014). https://doi.org/10.5254/RCT.13.86990
  40. S.-S. Choi, K.-H. Chung, and C. Nah, "Improvement of properties of silica-filled styrene-butadiene rubber (SBR) compounds using acrylonitrile-styrene-butadiene (NSBR)", Polym. Adv. Technol., 14, 557 (2003). https://doi.org/10.1002/pat.367
  41. G. Seo, S. Kaang, C. K. Hong, D. S. Jung, C. S. Ryu, and D. H. Lee, "Preparation of novel fillers, named networked silicas, and their effects of reinforcement on rubber compounds", Polym. Int., 57, 1101 (2008). https://doi.org/10.1002/pi.2449
  42. D. S. Jeong, C. K. Hong, G. T. Lim, G. Seo, and C. S. Ryu. "Networked silica with exceptional reinforcing performance for SBR compounds: Interconnected by methylene diphenyl diisocyanate", J. Elast. Plastics, 41, 353 (2009). https://doi.org/10.1177/0095244309103662
  43. G. Seo, S. M. Park, K. Ha, K. T. Choi, C. K. Hong, and S. Kaang, "Effectively reinforcing roles of the networked silica prepared using 3,3'-bis(triethoxysilylpropyl)tetrasulfide in the physical properties of SBR compounds", J. Mater. Sci., 45, 1897 (2010).
  44. G. Fontaras and Z. Samaras, "On the way to 130 g $CO_2$/km-Estimating the future characteristics of the average European passenger car", Energy policy, 38, 1826 (2011).
  45. G. Fontaras and P. Dilara, "The evolution of European passenger car characteristics 2000-2010 and its effects on real-world $CO_2$ emissions and $CO_2$ reduction policy", Energy Policy, 49, 719 (2012). https://doi.org/10.1016/j.enpol.2012.07.021
  46. E. M. Cichomski, "Silica-silane reinforced passenger car tire treads", Ph. D. Thesis, University of Twente, 2015.
  47. T. Fukuda, S. Fujii, Y. Nakamura, and M. Sasaki, "Mechanical properties of silica particle-filled styrene-butadiene rubber composites containing polysulfide-type silane coupling agents: Influence of loading method of silane", J. Appl. Polym. Sci., 130, 322 (2013). https://doi.org/10.1002/app.39175
  48. W. Kaewsakul, K. Sahakaro, W. K. Dierkes, and J. W. M. Noordermeer, "Optimization of rubber formulation for silicareinforced natural rubber compounds", Rubber Chem. Technol., 86, 313 (2013). https://doi.org/10.5254/RCT.13.87970
  49. A. Ansarifar, L. Wang, R. J. Ellis, and S. P. Kirtley, "The reinforcement and crosslinking of styrene butadiene rubber with silanized precipitated silica nanofiller", Rubber Chem. Technol., 79, 39 (2006). https://doi.org/10.5254/1.3547928
  50. G. Heinrich and T. A. Vilgis, "Why silica technology needs SSBR in high performance tires?", KGK, 61, 368 (2008).
  51. S. Mihara, R. N. Datta, W. K. Dierkes, J. W. M. Noordermeer, N. Amino, Y. Ishikawa, S. Nishitsuji, and M. Takenaka, "Ultra small-angle X-ray scattering study of flocculation in silica-filled rubber", Rubber Chem. Technol., 87, 348 (2014). https://doi.org/10.5254/rct.13.88958
  52. K.-J. Kim and J. L. White, "Silica surface modification using different aliphatic chain length silane coupling agents and their effects on silica agglomerate size and processability", Comp. Interfaces, 9, 541 (2002). https://doi.org/10.1163/15685540260494119
  53. K.-J. Kim and J. VanderKooi, "TESPT and treated silica compounds on TESPD rheological property and silica break down in natural rubber", KGK, 55, 518 (2002).
  54. C. S. Ryu, J.-K. Yang, W. Park, Y. J. Seo, S. J. Kim, D. I. Kim, S. H. Park, and G. Seo, "Reinforcement of styrene-butadiene/polybutadiene rubber compounds by modified silicas with different surface and networked states", J. Appl. Polym. Sci., 134, DOI: 10.1002/APP.44893 (2017).
  55. F. Bueche, "Mullins effect and rubber-filler interaction", J. Appl. Polym. Sci., 5, 271 (1961). https://doi.org/10.1002/app.1961.070051504