Preparation of Solventless UV Curable Thermally Conductive Pressure Sensitive Adhesives and Their Adhesion Performance

  • Baek, Seung-Suk (Department of Polymer Science & Engineering, Materials Chemistry and Engineering Laboratory, Dankook University) ;
  • Park, Jinhwan (Department of Polymer Science & Engineering, Materials Chemistry and Engineering Laboratory, Dankook University) ;
  • Jang, Su-Hee (Department of Polymer Science & Engineering, Materials Chemistry and Engineering Laboratory, Dankook University) ;
  • Hong, Seheum (Department of Polymer Science & Engineering, Materials Chemistry and Engineering Laboratory, Dankook University) ;
  • Hwang, Seok-Ho (Department of Polymer Science & Engineering, Materials Chemistry and Engineering Laboratory, Dankook University)
  • Received : 2017.05.22
  • Accepted : 2017.06.08
  • Published : 2017.06.30


Using various compositions of thermally conductive inorganic fillers with boron nitride (BN) and aluminum oxide ($Al_2O_3$), solventless UV-curable thermally conductive acrylic pressure sensitive adhesives (PSAs) were prepared. The base of the PSAs consists of 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, and isobornyl acrylate.The compositions of the thermally conductive inorganic fillers were 10, 15, 20, and 25 phr in case of BN, and 20:0, 15:5, 10:10, 5:15, and 0:20 phr in case of $BN/Al_2O_3$. The adhesion properties like peel strength, shear strength, and probe tack, and the thermal conductivity of the prepared PSAs were investigated with different thermally conductive inorganic filler contents. There were no significant changes in photo-polymerization behavior with increasing BN or $BN/Al_2O_3$ content. Meanwhile, the conversion rate and transmittance of the PSAs decreased and their thermal stabilities increased with increasing BN content. Their adhesion properties were also independent of the BN or $BN/Al_2O_3$ content. The dispersibility of BN in the acrylic PSAs was better than that of $Al_2O_3$ and it ranked the thermal conductivity in the following order: BN > $BN/Al_2O_3$ > $Al_2O_3$.


  1. R. J. McGlen, R. Jachuck, and S. Lin, "Integrated thermal management techniques for high power electronic devices", Appl. Therm. Eng., 24, 1143 (2004).
  2. A. J. McNamara, Y. Joshi, and Z. M. Zhang, "Characteriza-tion of nanostructured thermal interface materials-a review", Int. J. Therm. Sci., 62, 2 (2012).
  3. P. W. Ruch, O. Beffort, S. Kleiner, L. Weber, and P. J. Uggowitzer, "Selective interfacial bonding in Al (Si)-diamond composites and its effect on thermal conductivity", Compo. Sci. Technol., 66, 2677 (2006).
  4. S. Kemaloglu, G. Ozkoc, and A. Aytac, "Thermally conductive boron nitride/SEBS/EVA ternary composites: "processing and characterization"", Polym. Compos., 31, 1398 (2010).
  5. J. A. Reglero Ruiz, C. Saiz-Arroyo, M. Dumon, M. A. Rodriguez-Perez, and L. Gonzalez, "Production, Cellular Structure and Thermal Conductivity of Microcellular (methyl methacrylate)-( butyl acrylate)-(methyl methacrylate) Triblock Copolymers", Polym. Int., 60, 146 (2011).
  6. Y. X. Fu, Z. X. He, D. C. Mo, and S. S. Lu, "Thermal conductivity enhancement with different fillers for epoxy resin adhesives", Appl. Therm. Eng., 66, 493 (2014).
  7. H. Zhao, T. Liang, and B. Liu, "Synthesis and properties of copper conductive adhesives modified by $SiO_2$ nanoparticles", Int. J. Adhes. Adhes., 27, 429 (2007).
  8. A. Bjorneklett, L. Halbo, and H. Kristiansen, "Thermal conductivity of epoxy adhesives filled with silver particles", Int. J. Adhes. Adhes., 12, 99 (1992).
  9. J. Kim, B. S. Yim, J. M. Kim, and J. Kim, "The effects of functionalized graphene nanosheets on the thermal and mechanical properties of epoxy composites for anisotropic conductive adhesives (ACAs)", Microelectron. Reliab., 52, 595 (2012).
  10. Y. Zhang, S. Qi, X. Wu, and G. Duan, "Electrically conductive adhesive based on acrylate resin filled with silver plating graphite nanosheet", Synth. Met., 161, 516 (2011).
  11. W. Zhou, D. Yu, C. Wang, Q. An, and S. Qi, "Effect of filler size distribution on the mechanical and physical properties of alumina-filled silicone rubber", Polym. Eng. Sci., 48, 1381 (2008).
  12. H. Ishida and S. Rimdusit, "Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine", Thermochim. Acta, 320, 177 (1998).
  13. S.-S. Baek, S.-J. Jang, J.-H. Lee, D.-H. Kho, S.-H. Lee, and S.-H. Hwang, "Preparation of Acrylic Pressure Sensitive Adhesives for Optical Applications and Their Adhesion Performance", Polym. Korea, 38, 199 (2014).
  14. J. S. Bae, E. K. Park, H. S. Park, and M. S. Pyun, "A study on the synthesis of acrylic pressure-sensitive adhesives and its adhesive characteristics: 2. Solution type by isocyanate crosslinking", Polym. Korea, 17, 203 (1993).
  15. R. Mehnert, A. Pincus, I. Janorsky, R. Stowe, and A. Berejka, "UV & EB Curing Technology & Equipment", John Wiley & Sons, New York, 1998.
  16. K. Sato, A. Ijuij, and Y. Hotta, "Thermal conductivity enhancement of alumina/polyamide composites via interfacial modification", Ceram. Int., 41, 10314 (2015).
  17. Z. Li, D. Ju, L. Han, and L. Dong, "Formation of more efficient thermally conductive pathways due to the synergistic effect of boron nitride and alumina in poly (3-hydroxylbutyrate)", Thermochim. Acta, 652, 9 (2017).
  18. W. Zhou, S. Qi, Q. An, H. Zhao, and N. Liu, "Thermal conductivity of boron nitride reinforced polyethylene composites", Mater. Res. Bull., 42, 1863 (2007).
  19. J. Xu, K. M. Razeeb, and S. Roy, "Thermal properties of single walled carbon nanotube-silicone nanocomposites", J. Polym. Sci. B Polym. Phys., 46, 1845 (2008).
  20. K. M. Shahil, and A. A. Balandin, "Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials", Solid State Commun., 152, 1331 (2012).
  21. F. Du, C. Guthy, T. Kashiwagi, J. E. Fischer, and K. I. Winey, "An infiltration method for preparing single-wall nanotube/ epoxy composites with improved thermal conductivity", J. Polym. Sci. B Polym. Phys., 44, 1513 (2006).
  22. H. Huang, C. H. Liu, Y. Wu, and S. Fan, "Aligned carbon nanotube composite films for thermal management", Adv. Mater., 17, 1652 (2005).
  23. W. Zhou, C. Wang, T. Ai, K. Wu, F. Zhao, and H. Gu, "A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity", Compos. Part A Appl. Sci. Manuf., 40, 830 (2009).
  24. F. L. Guan, C. X. Gui, H. B. Zhang, Z. G. Jiang, Y. Jiang, and Z. Z. Yu, "Enhanced thermal conductivity and satisfactory flame retardancy of epoxy/alumina composites by combination with graphene nanoplatelets and magnesium hydroxide", Compos. Part B Eng., 98, 134 (2016).
  25. H. Yeo, A. M. Islam, N. H. You, S. Ahn, M. Goh, J. R. Hahn, and S. G. Jang, "Characteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties", Compos. Sci. Technol., 141, 99 (2017).
  26. Y. Yamamoto, S. Fujii, K. Shitajima, K. Fujiwara, S. Hikasa, and Y. Nakamura, "Soft polymer-silica nanocomposite particles as filler for pressure-sensitive adhesives", Polymer, 70, 77 (2015).
  27. C. H. Lim. H. Ryu, and U. R. Cho, "The Effects of Coupling Agent and Crosslinking Agent in the Synthesis of Acrylic Pressure Sensitive Adhesive for Polarizer Film", Polym. Korea, 33, 319 (2009).
  28. C. M. Ryu, Y. H. Nam, S. H. Lee, H. I. Kim, D. H. Lim,H. J. Kim, and K. M. Kim, "Adhesion characteristics of acrylic pressure sensitive adhesives on thin wafer materials", J. Adhes. Interface, 10, 134 (2009).
  29. S. H. Lee, S. K. Lee, and T. S. Hwang, "Synthesis and Adhesion Properties of UV Curable Acrylic PSAs for Semiconductor Manufacturing Process", Appl. Chem. Eng., 24, 148 (2013).