DOI QR코드

DOI QR Code

Study on the Mechanical Properties of TiAl Crystals Grown by a Floating Zone Method

  • Han, Chang-Suk (Department of ICT Automotive Engineering, Hoseo University) ;
  • Kim, Sang-Wook (Department of Nanobiotronics, Hoseo University)
  • Received : 2017.04.27
  • Accepted : 2017.06.10
  • Published : 2017.07.27

Abstract

Unidirectionally solidified TiAl alloys were prepared by optically-heated floating zone method at growth rates of 10 to 70 mm/h in flowing argon. The microstructures and tensile properties of these crystal bars were found to depend strongly on the growth rate and alloy composition. TiAl alloys with composition of 47 and 50 at.%Al grown under the condition of 10 mm/h showed $Ti_3Al({\alpha}_2)/TiAl({\gamma})$ layer structures similar to single crystals. As the growth rate increased, the alloys with 47 and 50 at.%Al compositions showed columnar-grain structures. However, the alloys fabricated under the condition of 10 mm/h had a layered structure, but the alloy with increased growth rate consisted of ${\gamma}$ single phase grains. The alloy with a 53 at.%Al composition showed a ${\gamma}$ single phase regardless of the growth rate. Room-temperature tensile tests of these alloys revealed that the columnar-grained material consisting of the layered structure showed a tensile ductility of larger than 4 % and relatively high strength. The high strength is caused by stress concentration at the grain boundaries; this enhances the secondary slip or deformation twinning across the layered structure in the vicinity of the grain boundaries, resulting in the appreciable ductility.

Keywords

References

  1. S. W. Kim, J. K. Hong, Y. S. Na, J. T. Yeom and S. E. Kim, Mater. Design, 54, 814 (2014). https://doi.org/10.1016/j.matdes.2013.08.083
  2. E. Schwaighofer, H. Clemens, S. Mayer, J. Lindemann, J. Klose, W. Smarsly and V. Guther, Intermetallics, 44, 128 (2014). https://doi.org/10.1016/j.intermet.2013.09.010
  3. D. Wen, Y. Zong, W. Xu, D. Shan and B. Guo, Inter. J. Hydrogen Energy, 39, 17404 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.051
  4. W. Zhang, L. Gao, J. Li, B. Yang and Y. Yin, Ceramics Inter., 37, 783 (2011). https://doi.org/10.1016/j.ceramint.2010.10.019
  5. C. S. Han and K. W. Koo, Korean J. Mater. Res., 18, 51 (2008). https://doi.org/10.3740/MRSK.2008.18.1.051
  6. C. S. Han, J. Korean Soc. Heat Treat., 18, 281 (2005).
  7. M. Yamaguchi, H. Inui, K. Kishida, M. Kobayashi, M. Kawasaki and K. Ibe, Phil. Mag. A, 74, 451 (1996). https://doi.org/10.1080/01418619608242154
  8. E. Cerreta and S. Mahajan, Acta Mater., 49, 3803 (2001). https://doi.org/10.1016/S1359-6454(01)00264-6
  9. M. Beschliesser, A. Chatterjee, A. Lorich, W. Knabl, H. Kestler, G. Dehm and H. Clemens, Mater. Sci. Eng. A, 329-331, 124 (2002). https://doi.org/10.1016/S0921-5093(01)01545-3
  10. T. Hirano, Acta Metall., 38, 2667 (1990). https://doi.org/10.1016/0956-7151(90)90280-T
  11. C. McCullough, J. J. Valencia, C. G. Levi and R. Mehrabian, Acta Metall., 37, 1321 (1989). https://doi.org/10.1016/0001-6160(89)90162-4
  12. J. D. Verhoeven, Fundamentals of Physical Metallurgy, John Willey & Sons, pp.233 (1975).
  13. R. Ducher, B. Viguier and J. Lacaze, Scripta Mater., 47, 307 (2002). https://doi.org/10.1016/S1359-6462(02)00145-8
  14. R. Lebensohn, H. Uhlenhut, C. Hartig and H. Mecking, Acta Mater., 46, 4701 (1998). https://doi.org/10.1016/S1359-6454(98)00132-3
  15. M. Werwer and A. Cornec, Comp. Mater. Sci., 19, 97 (2000). https://doi.org/10.1016/S0927-0256(00)00144-0