DOI QR코드

DOI QR Code

Influence of Fluorine-Doped Tin Oxide Coated on NiCrAl Alloy Foam Using Ultrasonic Spray Pyrolysis Deposition

초음파 분무 열분해법을 이용한 NiCrAl 합금 폼에 코팅된 불소 도핑된 주석 산화물의 영향

  • Shin, Dong-Yo (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Bae, Ju-Won (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Koo, Bon-Ryul (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
  • 신동요 (서울과학기술대학교 신소재공학과 의공학-바이오소재 융합 협동과정 신소재공학프로그램) ;
  • 배주원 (서울과학기술대학교 신소재공학과) ;
  • 구본율 (서울과학기술대학교 신소재공학과 의공학-바이오소재 융합 협동과정 신소재공학프로그램) ;
  • 안효진 (서울과학기술대학교 신소재공학과 의공학-바이오소재 융합 협동과정 신소재공학프로그램)
  • Received : 2017.06.19
  • Accepted : 2017.06.26
  • Published : 2017.07.27

Abstract

Fluorine-doped tin oxide (FTO) coated NiCrAl alloy foam is fabricated using ultrasonic spray pyrolysis deposition (USPD). To confirm the influence of the FTO layer on the NiCrAl alloy foam, we investigated the structural, chemical, and morphological properties and chemical resistance by using USPD to adjust the FTO coating time (12, 18, and 24 min). As a result, when an FTO layer was coated for 24 min on NiCrAl alloy foam, it was found to have an enhanced chemical resistance compared to those of the other samples. This improvement in the chemical resistance of using USPD NiAlCr alloy foam can be the result of the existence of an FTO layer, which can act as a protection layer between the NiAlCr alloy foam and the electrolyte and also the result of the increased thickness of the FTO layer, which enhances the diffusion length of the metal ion.

Keywords

References

  1. Y. Lin, L. Zhou, J. Xu, Z. Luo, H. Kan, J. Zhang, C. Yan and J. Zhang, Sci. Rep., 7, 40956 (2017). https://doi.org/10.1038/srep40956
  2. D. Y. Sin, G. H. An and H. J. Ahn, J. Korean Powd. Metall. Inst., 22, 350 (2015). https://doi.org/10.4150/KPMI.2015.22.5.350
  3. D. H. Oh, H. An, B. R. Koo and H. J. Ahn, J. Kor. Powd. Metall. Inst., 23, 95 (2016). https://doi.org/10.4150/KPMI.2016.23.2.95
  4. S. Ayabe, H. Omoto, T. Utaka, R. Kikuchi, K. Sasaki, Y. Teraoka and K. Eguchi, Appl. Catal. A-Gen., 241, 261 (2003). https://doi.org/10.1016/S0926-860X(02)00471-4
  5. D. Y. Sin, E. H. Lee, M. H. Park and H. J. Ahn, Korean J. Mater. Res., 26, 393 (2016). https://doi.org/10.3740/MRSK.2016.26.7.393
  6. Y. J. Lee, B. R. Koo, S. H. Baek, M. H. Park and H. J. Ahn, Korean J. Mater. Res., 25, 391 (2015). https://doi.org/10.3740/MRSK.2015.25.8.391
  7. Y. S. Oh, H. S. Roh, K. W. Jun and Y. S. Baek, Int. J. Hydrog. Energy, 28, 1387 (2003). https://doi.org/10.1016/S0360-3199(03)00029-6
  8. K. O. Christensen, D. Chen, R. Lodeng and A. Holmen, Appl. Catal. A-Gen., 314, 9 (2006). https://doi.org/10.1016/j.apcata.2006.07.028
  9. S. Freni, G. Calogero and S. Cavallaro, J. Power Sources, 87, 28 (2000). https://doi.org/10.1016/S0378-7753(99)00357-2
  10. P. Wu, X. Li, S. Ji, B. Lang, F. Habimana and C. Li, Catal. Today, 146, 82 (2009). https://doi.org/10.1016/j.cattod.2009.01.031
  11. F. Yin, S. Ji, P. Wu, F. Zhao, H. Liu and C. Li, Chemsuschem, 1, 311 (2008). https://doi.org/10.1002/cssc.200700075
  12. J. G. Checmanowski and B. Szczygiel, Corros. Sci., 50, 3581 (2008). https://doi.org/10.1016/j.corsci.2008.09.012
  13. T. J. Nijdam, L. P. H. Jeurgens and W. G. Sloof, Acta Mater., 53, 1643 (2005). https://doi.org/10.1016/j.actamat.2004.12.014
  14. J. M. Kim, B. R. Koo, H. J. Ahn and T. K. Lee, Korean J. Mater. Res., 25, 125 (2015). https://doi.org/10.3740/MRSK.2015.25.3.125
  15. A. I. Martinez, L. Huerta, J. M. O-Rueda De Leon, D. Acosta, O. Malik and M. Aguilar, J. Phys. D: Appl. Phys., 36, 5091 (2006).
  16. H. R. An, H. An, D. H. Riu and H. J. Ahn, Arch. Metall. Mater., 60, 1241 (2015). https://doi.org/10.1515/amm-2015-0106
  17. A. E. Rakhshani, Y. Makdisi and H. A. Ramazaniyan, J. Appl. Phys. 83, 1049 (1998). https://doi.org/10.1063/1.366796
  18. G. Kishan, L. Coulier, V. H. J. de Beer, J. A. R. van Veen and J. W. Niemantsverdriet, J. Catal., 196, 180 (2000). https://doi.org/10.1006/jcat.2000.3013
  19. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson and R. St. C. Smart, Appl. Surf. Sci., 257, 2717 (2011). https://doi.org/10.1016/j.apsusc.2010.10.051
  20. M. E. Levin, M. Salmeron, A. T. Bell and G. A. Somorjai, Surf. Sci., 195, 429 (1988). https://doi.org/10.1016/0039-6028(88)90351-2
  21. Q. Pang, Z. L. Hu, and D. L. Sun, Vacuum, 129, 86 (2016). https://doi.org/10.1016/j.vacuum.2016.04.018
  22. J. W. Bae, B. R. Koo, H. R. An and H. J. Ahn, Ceram. Int., 41, 14668 (2015). https://doi.org/10.1016/j.ceramint.2015.07.189