DOI QR코드

DOI QR Code

하수처리장 슬러지처리 계통에서의 인 제거 및 회수를 위한 Struvite 결정화 공정 적용성 평가

Assessment of the Struvite Crystallization Process for Phosphate Removal and Recovery from a Sludge Treatment System of a Domestic Wastewater Treatment Plant

  • Baek, Seung Ryong (K-water Water Environment Technical Center) ;
  • Lee, Byung Joon (School of Disaster Prevention and Environmental Engineering, Kyungpook National University)
  • 투고 : 2017.07.19
  • 심사 : 2017.08.11
  • 발행 : 2017.08.31

초록

최근 부영양화 문제, 인광석 자원이 부족해지고 있는 국제적 상황, 하수처리장 관로 스케일 문제 등에 대응하기 위하여, Struvite 결정화 공정을 하수처리장 슬러지처리 계통의 고농도 인 제거/회수에 적용하려는 시도를 하고 있다. 본 연구는 실제 국내 하수처리장 슬러지처리 계통에 대한 Struvite 결정화 공정 적용 가능성을 평가를 목표하여, 첫째, 운영자료 및 현장측정자료 분석을 통하여 실제 하수처리장 슬러지처리 계통의 인 농도 및 물질수지를 분석하였고, 둘째, 평형화학 계산 프로그램을 활용하여 Struvite 결정화 반응 포텐셜, 이에 따른 최적 $Mg^{2+}$ 주입량, pH 등에 관해 연구하였고, 셋째, 실험실규모 배치실험을 통해 실제 Struvite 결정화 반응 동역학에 대해 연구하였다. 슬러지처리 계통에서의 인 농도 및 물질수지를 분석하였을 때, Struvite 결정화 공정은 소화슬러지 및 탈리여액에 적용함이 바람직한 것으로 파악되었다. 평형화학 계산결과, 안정적인 공정 운영을 위해서는 pH 8 이상, $Mg^{2+}$ 주입량은 몰비 기준 이론 요구량의 1.2배 이상을 첨가해야 하는 것으로 파악하였다. 그리고, Struvite 결정화 반응 동역학은 1차 반응속도식을 따르고, Struvite 결정화 반응이 평형상태에 도달한 경우, 모든 pH 조건에서 인산염인 제거율이 80% 이상으로 우수하게 나타났다. Struvite 결정화 반응 시 NaOH 첨가 없이 폭기만으로 $CO_2$ 탈기를 일으켜 반응 종결 후 pH 8.7 이상까지 상승했으며, $Mg^{2+}$ 주입원의 경우 간수 등 저가 대체물질을 활용할 수 있으므로, 약품비에 의한 운영비 증대 없이 Struvite 결정화 공정을 적용할 수 있으리라 판단된다.

Eutrophication and shortage of phosphate ore raise the necessity of phosphate removal and recovery from wastewater treatment plants. Especially, a sludge treatment system containing highly concentrated phosphate should be targeted for phosphate removal and recovery. This study thus aimed to evaluate the capability of the struvite crystallization process for phosphate removal and recovery from a sludge treatment system of a wastewater treatment plant. Analysis on phosphate concentrations and masses in the sludge treatment system revealed that digested sludge and centrate have phosphate concentrations and masses, high enough to adopt the struvite crystallization process. Chemical equilibrium modeling indicated that the struvite crystallization reaction substantially occurred with pH higher than 8 and $Mg^{2+}$ concentration 1.2 times higher than its theoretical requirement. A series of batch tests with digested sludge and centrate indicated that the phosphate removal reaction by struvite crystallization followed a first-order kinetics and reached over 80% removal efficiency at equilibrium. Aeration in the batch tests was found to purge $CO_2$ in sludge or centrate and increase pH up to 8.7, without adding NaOH. Thus, we concluded that the struvite crystallization process could be an efficient and economical process for phosphate removal and recovery from a wastewater treatment plant.

키워드

과제정보

연구 과제 주관 기관 : 대구녹색환경지원센터

참고문헌

  1. Weon, S. Y., Park, S. K. and Lee, S. I., "Removal of Nitrogen and Phosphorus Using Struvite Crystallization," J. Korean Soc. Environ. Eng., 22(4), 599-607(2000).
  2. Jo, Y. M., Chun, B. H. and Park, C. J., "Recovery and Recycle Technologies of Phosphorous from River and Water Treatment Plants," Korean Ind. Chem. News, 14(5), 1-11(2011).
  3. Choi, W. J., Park, K. M., Yoon, B. G., Kim, M. C. and Oh, K. J., "Recovery of Presource from Sewage Sludge by a Struvite-forming Method," J. Korean Soc. Environ. Eng., 31(7), 557-564(2009).
  4. Lee, S., Kim, C., Park, J., Choi, D. and Ahn, J., "Comparison of Steel Slag and Activated Carbon for Phosphate Removal from Aqueous Solution by Adsorption," J. Korean Soc. Environ. Eng., 39(5), 303-309(2017). https://doi.org/10.4491/KSEE.2017.39.5.303
  5. Le Corre, K. S., Valsami-Jones, E., Hobbs, P. and Parsons, S. A., "Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review," Crit. Rev. Environ. Sci. and Technol., 39(6), 433-477(2009). https://doi.org/10.1080/10643380701640573
  6. Abe, S., "Phosphate removal from dewatering filtrate by MAP process in full scale experiment at Seibu Wastewater Treatment Plant," Proceedings 4th CIWEM & JSWA Technology Exchange Workshop, pp. 260-277(1995).
  7. Bergmans, B., Struvite recovery from digested sludge, PhD Dissertation, Delft University of Technology, the Netherlands (2011).
  8. De-Bashan, L. E. and Bashan, Y., "Recent advances in removing phosphorous from waste water and its future use as fertilizer (1997-2003)," Water Res., 38, 4222(2004). https://doi.org/10.1016/j.watres.2004.07.014
  9. Park, N., Chang, H., Lim, H., Ahn, K. and Kim, W., "Empirical Study on Applicability of Phosphorus Recovery Process in Wastewater Treatment Plant," J. Korean Soc. Environ. Eng., 39(1), 40-49(2017). https://doi.org/10.4491/KSEE.2017.39.1.40
  10. Borgerding, J., "Phosphate deposits in digestion systems," J. Water Pollut. Control Fed., 44(5), 813-819(1972).
  11. Battistoni, P., Pavan, P., Prisciandaro, M. and Cecchi, F., "Struvite crystallization: a feasible and reliable way to fix phosphorus in anaerobic supernatants," Water Res., 34(11), 3033-3041(2000). https://doi.org/10.1016/S0043-1354(00)00045-2
  12. Fujimoto, N., Mizuochi, T. and Togami, Y., "Phosphorus fixation in the sludge treatment system of a biological phosphorus removal process," Water Sci. and Technol., 23, 635-640(1991). https://doi.org/10.2166/wst.1991.0513
  13. Matsumiya, Y., Yamasita, T. and Nawamura, Y., "Phosphorus Removal from Sidestreams by Crystallisation of Magnesium-Ammonium-Phosphate Using Seawater," Water and Environ. J., 14, 291-296(2000). https://doi.org/10.1111/j.1747-6593.2000.tb00263.x
  14. APAH, AWWA and WEF, Standard Methods for the Examination of Water and Wastewater. 21th Ed. American Water Works Association, Washington DC, USA(2005).
  15. Celen, I., Buchanan, J. R., Bruns, R. T., Robinson, R. B. and Raman, D. R., "Using a chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure," Water Res., 41(8), 1689-1696(2007). https://doi.org/10.1016/j.watres.2007.01.018
  16. Ali, M. I. and Schneider, P. A., "A fed-batch design approach of struvite system in controlled supersaturation," Chem. Eng. Sci., 61, 3951-3961(2006). https://doi.org/10.1016/j.ces.2006.01.028
  17. Ali, M. I. and Schneider, P. A., "An approach of estimating struvite growth kinetic incorporating thermodynamic and solution chemistry, kinetic and process description," Chem. Eng. Sci., 63, 3514-3515(2008). https://doi.org/10.1016/j.ces.2008.04.023
  18. Nelson, N. O., Mikkelson, R. L. and Hesterberg, D. L., "Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg : P ratio and determination of rate constant," Bioresour. Technol., 89, 229-236(2003). https://doi.org/10.1016/S0960-8524(03)00076-2
  19. Mehta, C. M. and Batstone, D. J., "Nuclearting and growth kinetics of struvite crystallization," Water Res., 47, 2890-2900(2013). https://doi.org/10.1016/j.watres.2013.03.007
  20. Rahaman, M. S., Ellis, N. and Mavinic, D. S., "Effects of various process parameters on struvite precipitation kinetics and subsequent determination of rate constants," Water Sci. and Technol., 57(5), 647-654(2008). https://doi.org/10.2166/wst.2008.022
  21. Rahman, M., Salleh, M. A. M., Rashid, U., Ahsan, A., Hossain, M. M. and Ra, C. S., "Nuclearting and growth kinetics of struvite crystallization," Arabian J. Chem., 7, 139-155(2014). https://doi.org/10.1016/j.arabjc.2013.10.007
  22. Wang, S., Hawkins, G. L., Kiepper, B. H. and Das, K. C., "Struvite Precipitation as a Means of Recovering Nutrients and Mitigating Ammonia Toxicity in a Two-Stage Anaerobic Digester Treating Protein-Rich Feedstocks," Molecules, 21, 1011(2016). https://doi.org/10.3390/molecules21081011