DOI QR코드

DOI QR Code

세라믹 여재를 활용한 상향류식 여과형 비점오염저감시설의 최적 운전 및 역세척 조건

Optimization of Operation and Backwashing Condition for an Upflow Stormwater Filtration System Utilizing Ceramic Media

  • 황유훈 (서울과학기술대학교 환경공학과) ;
  • 서영교 (서울과학기술대학교 환경공학과) ;
  • 김효원 (서울과학기술대학교 환경공학과) ;
  • 노건완 ((주) C&C) ;
  • 신현상 (서울과학기술대학교 환경공학과) ;
  • 김도군 (경희대학교 사회기반시스템공학과)
  • Hwang, Yuhoon (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Seo, Younggyo (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Kim, Hyowon (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Roh, Kunwan (C&C Inc.) ;
  • Shin, Hyunsang (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Kim, Dogun (Department of Civil Engineering, Kyunghee University)
  • 투고 : 2017.07.18
  • 심사 : 2017.08.16
  • 발행 : 2017.08.31

초록

도로변 등에 여과형 강우유출수 처리시설이 많이 이용되고 있으나, 유지관리의 최소화, 성능의 검증 및 최적 조건의 수립이 선행되어야 한다. 본 연구에서는 강도가 우수하고 성형이 용이한 세라믹 여재를 사용하고, 하단 지지부와 상단의 여과조로 이루어진 상향류식 여과 시스템을 구성하고, SS 제거능과 역세척 조건을 검토하여, 최적 운전 조건을 설정하였다. 여과 선속도 20-40 m/h 조건에서 운전하였을 때, 총 고형물 부하 $30kg/m^2$에 이르는 조건에서도 최대 수두 손실 상승이 3 cm 내외이었으며, SS 처리 효율이 96% 이상으로, 안정적인 운전이 가능하였다. 운전 중의 손실수두와 여재층 공극률은 급수 모델에 의해 모사가 가능하였다. 특히, 하단 지지부에서 일정 입도 이상의 SS가 상당량 제거되어, 여과조에 부하를 감소시킬 수 있음을 확인하였다. 최적의 역세척 조건을 설정하기 위하여 공기 및 수세척의 시간과 유량, 그리고 정체수 배출 공정의 유무에 따른 영향을 확인하였으며, 실험한 모든 조건에서 만족할 만한 손실수두의 회복을 달성할 수 있었다. 다만, 역세척 직후 SS의 배출을 최소화하기 위해서는 공기세척과 수세척 공정 사이에 정체수 배출 공정의 도입이 효과적인 것으로 파악되었다. 본 연구에서 설정한 역세척 조건을 적용하였을 때, SS 부하 $400-450kg/m^2$의 여재층이 성공적으로 세척될 수 있어, 장기운전이 충분히 가능할 것으로 판단된다.

Stormwater filtration is widely used for the urban runoff treatment. However, intensive maintenance and lack of information about the performance have resulted in an increased need of proper evaluation. In this study, the performance of an upflow stormwater runoff filtration system, consisting of a supporting unit and a filtration unit filled with a ceramic media, was investigated. The maximum head loss increase was about 3 cm under the suspended solid (SS) load of $30kg/m^2$ and the SS removal was more than 96%, when the filtration velocity was 20-40 m/h. The head loss and the porosity of the media can successfully be described by a power model. It was confirmed that the a significant amount of SS can effectively be removed at supporting unit, minimizing SS load to the filter media bed. Several backwashing strategies have been tested to establish the optimum condition. It was found that the stagnant water discharge is important to minimize the SS release immediately after backwashing. Also, the filter bed loaded with $400-450kg/m^2$ SS can almost completely be washed to reduce the head loss to the that of empty bed. The results in this study indicate that the upflow ceramic media filter is an excellent alternative to stormwater treatment, with high SS removal and long lifespan.

키워드

과제정보

연구 과제 주관 기관 : 서울과학기술대학교

참고문헌

  1. Korea Office of Prime Minister, Korea Ministry for Food, Agriculture, Forestry and Fisheries, Korea Ministry of Knowledge Economy, Korea Ministry of Environment, Korea Ministry of Land, Korea Transport and Maritime Affairs, Korea National Emergency Management Agency, Korea Rural Development Administration, Korea Forest Service, Comprehensive Measures for Non-point Source Pollution Management in the Four Major Rivers(2012).
  2. Yi, S.-J. and Kim, Y.-I., "Improvement on management of mon-point source pollution for reasonable implementation of TMDL - Focusing on selection of non-point source pollution management region and management of non-point source pollutant -," J. Korean Soc. Environ. Eng., 36(10), 719-723(2014). https://doi.org/10.4491/KSEE.2014.36.10.719
  3. Siriwardene, N. R., Deletic, A. and Fletcher, T. D., "Clogging of stormwater gravel infiltration systems and filters: Insights from laboratory study," Water Res., 41, 1433-1440(2007). https://doi.org/10.1016/j.watres.2006.12.040
  4. Choi, W. S., Song, C. S. and Kim, S. K., "A study on the headloss of filter media for treatment of road runoff," J. Korean Soc. Water Wastewater, 22(6), 697-704(2008).
  5. USEPA, "Storm Water Technology Fact Sheet: Sand Filters, EP 832-F-99-007,"(1999).
  6. Ballard, B. W. and Kellgher, R., "The SUDS Manul. Construction Industry Research & Information Association (CIRIA)," (2007).
  7. Hsieh, C. and Davis, P., "Evaluation and optimization of bioretention media for treatment of urban storm water runoff," J. Environ. Eng., 131(11), 1521-1531(2005). https://doi.org/10.1061/(ASCE)0733-9372(2005)131:11(1521)
  8. Ahn, T.-W., Choi, I.-S. and Oh, J.-M., "Evaluation of the water purification efficiency of waste LCD glass media by using foaming technology," J. Korean Soc. Water Wastewater, 24(4), 369-375(2010).
  9. Kim, S., Oh, H. and Ahn, J., "Road runoff treatment using pilot scale-NPS treatment plant filling up expended polypropylene media," J. Korean Soc. Environ. Eng., 36(10), 711-718(2014). https://doi.org/10.4491/KSEE.2014.36.10.711
  10. Lim, H. S., Lim, W., Hu, J. Y ., Ziegler, A. and Ong, S. L., "Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems," J. Environ. Manage., 147, 24-33(2015). https://doi.org/10.1016/j.jenvman.2014.04.042
  11. Franks, C., Davis, A. P. and Aydilek, A. H., "Geosynthetic filters for water quality improvement of urban storm water runoff," J. Environ. Eng.-ASCE, 138(10), 1018-1028(2012). https://doi.org/10.1061/(ASCE)EE.1943-7870.0000565
  12. Rodgers, M., Mulqueen, J. and Healy, M. G., "Surface clogging in an intermittent stratified sand filter," Soil. Sci. Soc. Am. J., 68, 1827-1832(2004). https://doi.org/10.2136/sssaj2004.1827
  13. Pratap, M. R., Khambahmmettu, U., Clark, S. E. and Pitt, R., "Stormwater polishing: Upflow vs. downflow filters" in Proceedings of World Environmental and Water Resources Congress 2007, Tmp, Florid, United States(2007).
  14. Boller, M. A. and Kavanaugh, M. C., "Particle Characteristics and Headloss Increase in Granular Media Filtration," Water Res., 29(4), 1139-1149(1995). https://doi.org/10.1016/0043-1354(94)00256-7
  15. Kang, S., Kim, S., Lee, S. and Lee, T., "An Upflow-Type Filtration Device Using Expanded Polypropylene Media (EPM) to Treat First Flush of Rainwter," Water Environ. Res., 88(3), 195-200(2016). https://doi.org/10.2175/106143016X14504669767373
  16. Siriwardene, N. R., Deletic, A. and Fletcher, T. D., "Clogging of stormwater gravel infiltration systems and filters: Insights from a laboratory study," Water Res., 41, 1433-1440(2007). https://doi.org/10.1016/j.watres.2006.12.040
  17. Herngren, L., Goonetilleke, A. and Ayoko, G. A., "Analysis of heavy metals in road-deposited sediments," Anal. Chim. Acta., 571, 270-278(2006). https://doi.org/10.1016/j.aca.2006.04.064
  18. Brydon, J., Oh, I., Wilson, J., Hall, K. and Schreier, H., "Evaluation of Mitigation Methods to Manage Contaminant Transfer in Urban Watersheds," Water. Qual. Res. J. Can., 44, 1-15(2009). https://doi.org/10.2166/wqrj.2009.002
  19. Bian, B. and Zhu, W., "Particle size distribution and pollutants in road-deposited sediments in different areas of Zhenjiang, China," Environ. Geochem. Hlth., 31, 511-520(2009). https://doi.org/10.1007/s10653-008-9203-8
  20. Seattle Public Utilities and Herrera Consultants, "Seattle Street Sweeping Pilot Study - Monitoring Report,"(2009).
  21. Lee, C. S.-L., Li, X., Shi, W., Cheung, S. C.-N. and Thornton, I., "Metal contamination in urban, suburban and country park soils of Hong Kong: a study based on GIS and multivariate statistics," Sci. Total. Environ., 356, 45-61(2006). https://doi.org/10.1016/j.scitotenv.2005.03.024
  22. Kartal, S., Aydin, Z. and Tokalioglu, S., "Fractionation of metals in street sediment samples by using the BCR sequential extraction procedure and multivariate statistical elucidation of the data," J. Hazard. Mater., 132(1), 80-89(2006). https://doi.org/10.1016/j.jhazmat.2005.11.091
  23. Zhang, M. and Wang, H., "Concentrations and chemical forms of potentially toxic metals in road-deposited sediments from different zones of Hangzhou, China," J. Environ. Sci., 21, 625-631(2009). https://doi.org/10.1016/S1001-0742(08)62317-7
  24. Shi, G., Chen, Z., Xu, S., Zhang, J., Wang, L., Bi, C. and Teng, J., "Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China," Environ. Pollut., 156(2), 251-260(2008). https://doi.org/10.1016/j.envpol.2008.02.027
  25. Tanner, P. A., Ma, H. and Yu, P. K. N., "Fingerprinting metals in urban street dust of Beijing, Shanghai, and Hong Kong," Environ. Sci. Technol., 42, 7111-7117(2008). https://doi.org/10.1021/es8007613
  26. Wei, B. and Yang, L., "A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China," Microchem. J., 94(2), 99-107(2010). https://doi.org/10.1016/j.microc.2009.09.014
  27. Hu, X., Zhang, Y., Luo, J., Wang, T. and Lian, H., "Total concentrations and fractionation of heavy metals in roaddeposited sediments collected from different land use zones in a large city (Nanjing), China," Chem. Spec. Bioavailab., 23(1), 46-52(2011). https://doi.org/10.3184/095422911X12971903458891
  28. Kim, D.-G., Jeong, K. and Ko, S.-O., "Removal of road deposited sediments by sweeping and its contribution to highway runoff quality in Korea," Environ. Technol., 35, 2546-2555(2014). https://doi.org/10.1080/09593330.2014.911777
  29. Korea Ministry of Environment, "Manual for installation and management of non-point pollution reduction facilities,"(2014).
  30. Urbonas, B. R., "Design of sand filter for stormwater quality enhancement," Water Environ. Res., 71(1), 102-113(1999). https://doi.org/10.2175/106143099X121625
  31. Clark, S. E. and Pitt, R., "Solids removal in storm-wter filters modeled using power equation," J. Environ. Eng., 135(9), 896-899(2009). https://doi.org/10.1061/(ASCE)EE.1943-7870.0000068
  32. Indraratna, B., Nguyen, V. T. and Rujikiatkamjorn, C., "Hydraulic conductivity of saturated granular soils determined using constriction-based technique," Can. Geotech. J., 49, 607-613(2012). https://doi.org/10.1139/t2012-016
  33. Wu, F.-C., "Stochastic modeling of sediment intrusion into gravel beds," PhD thesis, University of California, Berkeley (1993).
  34. Wu, F.-C. and Hung, H.-T., "Hydraulic resistance induced by deposition of sediment in porous medium," J. Hydraul. Eng., 126(7), 547-551(2000). https://doi.org/10.1061/(ASCE)0733-9429(2000)126:7(547)
  35. American Water Works Association (AWWA), "Water quality and treatment," 5th Ed., McGraw-Hill, New York(1999).