DOI QR코드

DOI QR Code

지하수 오염물질 처리를 위한 Full Scale PUV/US Hybrid System 연구

A Study of Full Scale PUV/US Hybrid System for Contaminant Treatment in Groundwater

  • 투고 : 2016.12.07
  • 심사 : 2017.10.17
  • 발행 : 2017.10.31

초록

전 세계적으로 지하수에서 TCE, PCE, BTEX, PAH, TPH, TNT, RDX, HMX가 지속적으로 검출되고 있다. 이러한 오염물질들은 기존의 물리화학적 방법으로 제거시에는 한계가 있으며, 신속한 정화를 요구하는 현장에 적용하기에는 많은 어려움이 있는 실정이다. 이에 본 연구에서는 난분해성 오염물질의 제거를 위해 PUV와 US를 연계하여 적용하고자 하였다. 각 공정은 고 에너지를 주입하는 PUV 공정과 라디칼 생산을 통해 오염물을 제거하는 US 공정의 특징을 이용하였으며, 제거율 향상을 위한 촉매주입도 함께 고려하였다. 연구 결과 PUV-US 하이브리드 시스템의 상승효과는 TCE, PCE, BTEX, TNT, RDX, HMX를 처리하는데는 90% 이상의 제거율을 나타내 적용 가능한, 효과적인 공정으로 판단되었으나 PAHs 제거를 위해서는 추가적인 공정 개선이 필요한 것으로 나타났다.

Chlorinated hydrocarbons (TCE and PCE), petroleum hydrocarbons (BTEX, PAHs, and TPH), and explosive compounds (TNT, RDX, and HMX) have been detected in underground water countrywide. The overall objective of this study is to evaluate sono-catalytic degradation coupled with the use of PUV in order to understand the fate and transport of a representative selection of non-biodegradable contaminants (i.e., TCE, PCE, BTEX, PAHs, TPH, TNT, RDX, and HMX) in groundwater. Both ultraviolet (UV) and ultrasound (US) systems are used in degrading of organic contaminants and they can thus be applicable simultaneously as an UV/US hybrid system in attempts further to increase the degradation efficiency. Results indicate that synergistic effect of UV/US hybrid system is closely correlated to the enhancement of sono-chemical reactivity with the UV-US interaction of increasing the formation rate of OH by providing additional $H_2O_2$ production through the pyrolysis of water molecules during UV/US hybrid irradiation.

키워드

과제정보

연구 과제번호 : 수계 PPCPs 분석 및 PUV/US를 이용한 처리에 대한 연구

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. Hua, I. and Hoffmann, M. R., "Optimization of ultrasonic irradiation as an advanced oxidation technology," Environ. Sci. Technol., 31(8), 2237-2243(1997). https://doi.org/10.1021/es960717f
  2. Kim, I. K., Huang, C. P. and Chiu, P. C., "Sonochemical decomposition of dibenzothiophene in aqueous solution," Water Res., 35(18), 4370-4378(2001). https://doi.org/10.1016/S0043-1354(01)00176-2
  3. Naddeo, V., Belgiorno, V., Kassinos, D., Mantzavinos, D. and Meric, S., "Ultrasonic degradation, mineralization and detoxification of diclofenac in water: optimization of operating parameters," Ultrason. Sonochem., 17(1), 179-185(2010). https://doi.org/10.1016/j.ultsonch.2009.04.003
  4. Park, J. S., Her, N. G. and Yoon, Y., "Sonochemical degradation of chlorinated phenolic compounds in water: effects of physicochemical properties of the compounds on degradation," Water, Air, Soil Pollut., 215(1), 585-593(2011). https://doi.org/10.1007/s11270-010-0501-2
  5. Abbasi, M. and Asl, N. R., "Sonochemical degradation of Basic Blue 41 dye assisted by nano $TiO_2$ and $H_2O_2$," J. Hazard. Mater., 153, 942-947(2008). https://doi.org/10.1016/j.jhazmat.2007.09.045
  6. Pang, Y. L., Bhatia, S. and Abdullah, A. Z., "Process behavior of $TiO_2$ nanotube - enhanced sonocatalytic degradation of Rhodamine B in aqueous solution," Sep. Purif. Technol., 77, 331-338(2011). https://doi.org/10.1016/j.seppur.2010.12.023
  7. Her, N., Park, J. S. and Yoon, Y., "Sonochemical enhancement of hydrogen peroxide production by inert glass beads and $TiO_2$-coated glass beads in water," Chem. Eng. J., 166(1), 184-190(2010). https://doi.org/10.1016/j.cej.2010.10.059
  8. Ma, Y. S., Sung, C. F. and Lin, J. G., "Degradation of carbofuran in aqueous solution by ultrasound and Fenton processes: effect of system parameters and kinetic study," J. Hazard. Mater., 178, 320-325(2010). https://doi.org/10.1016/j.jhazmat.2010.01.081
  9. Bai, L.-X., Xu, W.-L., Tian, Z. and Li, N.-W., "A high-speed photographic study of ultrasonic cavitation near rigid boundary," J. Hydrodynamics, Ser. B., 20(5), 637-644(2008). https://doi.org/10.1016/S1001-6058(08)60106-7
  10. De la Cruz, N., Gimenez, J., Esplugas, S., Grandjean, D., de Alencastro, L. and Pulgarin, C., "Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge," Water Res., 46(6), 1947-1957(2012). https://doi.org/10.1016/j.watres.2012.01.014
  11. Wang, W., Serp, P., Kalck, P. and Faria, J. L., "Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method," Appl. Catal. B, 56(4), 305-312(2005). https://doi.org/10.1016/j.apcatb.2004.09.018
  12. Yu, Y., Yu, J. C., Chan, C. Y., Che, Y. K., Zhao, J. C., Ding, L., Ge, W. K. and Wong, P. K., "Enhancement of adsorption and photocatalytic activity of $TiO_2$ by using carbon nanotubes for the treatment of azo dye," Appl. Catal. B, 61(1-2), 1-11(2005). https://doi.org/10.1016/j.apcatb.2005.03.008
  13. Park, S., Park, J., Lee, H., Heo, J., Yoon, Y., Choi, K. and Her, N., "Ultrasonic Degradation of Endocrine Disrupting Compounds in Seawater and Brackish Water," Environ. Eng. Res., 16(3), 137-148(2011). https://doi.org/10.4491/eer.2011.16.3.137
  14. Byun, I., Lee, J., Lim, J., Lee, J. and Park, T., "Impact of Irradiation Time on the Hydrolysis of Waste Activated Sludge by the Dielectric Heating of Microwave," Environ. Eng. Res., 19(1), 83-89(2014). https://doi.org/10.4491/eer.2014.19.1.083